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Abstract

In this paper we describe a random generator for large and sparse quadratic programming
problems that frequently arise in different areas of applied science. This generator is an
useful tool in testing algorithms on QP problems with different features, since it allows
us to vary many parameters which characterize the problems.
The procedure used to generate a QP problem as well as some details for its implemen-
tation are explained.
Finally, we report an analysis of the numerical results, obtained by the routine E04NFK
of the NAG library on the test problems produced by the generator.
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Chapter 1

Introduction

In many areas of science and technology it is required to solve the following linearly
constrained quadratic programming (QP) problem

minimize f(x) = 1
2xT Gx + qT x

subject to Cx = d, Ax ≥ b,
(1.1)

where G is a symmetric matrix of order n, C is an me×n matrix of full row rank (me ≤ n)
and A is an mi × n matrix.
At the moment, attention is greatly focused on large QP problems where G, C and A
may be sparse matrices, without a particular structure. These large problems are basic
to many applications of data analysis, such as image restoration [1], pattern recognition
based upon support vector machine technique [3] and constrained bivariate interpolation
[5]. Furthermore, large QP problems arise as subproblems of the class of symmetric
cost approximation methods [13] for large–scale nonlinear programming or variational
inequality problems when the auxiliary function is a convex quadratic function or the
gradient map of a convex quadratic function. See, for example, the sequential quadratic
programming method or, for the variational inequalities, the linear approximation meth-
ods [12] and the descent methods based upon projective gap functions [14].
In order to make clear the “effectiveness” of the solvers proposed in literature for large
QP problems, it is necessary to evaluate the numerical behaviour of these methods by
an extensive experimentation on vaste sets of test problems with different features.
Well–known collections of QP problems of the form (1.1) are contained in CUTE [2]
(http://www.cse.clrc.ac.uk/Activity/CUTE) and in the repository at the URL
http://www.doc.ic.ac.uk/∼im/#DATA [9] (see also the following URL for a list of test-
cases in optimization: http://plato.la.asu.edu/topics/testcases.html).
The aim of this work is to describe a generator for random, large and sparse quadratic
programs. This generator enables us to prefix the most part of the parameters that
characterize a problem and, above all, it permits to specify the distribution of the singular
values of the matrices of the constraints and the spectrum of the hessian and the reduced
hessian of the objective function. Thus we can generate poorly or well–conditioned
problems of arbitrary size, number of constraints and level of sparsity. Varying in a
convenient way the parameters which the test problems depend on, we can reflect the
features of the quadratic programs arising in many practical applications.
In Chapter 2, we describe the technique for randomly generating QP problems with
assigned features. In Chapter 3, we report the way of storing the sparse matrices of the
QP problem and some details of the implementation of the generator. In Chapter 4, we
consider a set of test problems produced by this generator and we show some numerical
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results obtained by solving the test problems with the routine E04NKF of the NAG
library [11].
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Chapter 2

A procedure for randomly
generating a QP problem

We assume that the following data are given:

• the sparsity of the n×n matrix G (spars(G)) and of the m×n matrix B (spars(B)),

where B =
(

C
A

)
denotes the constraint matrix (m = mi + me); furthermore we

set f =
(

d
b

)
;

• the rank r(G), the spectral condition number K(G) and the maximum and the
minimum nonzero eigenvalues, denoted by φmax(G) and φmin(G), of the Hessian
matrix G of (1.1); for convex QP problems, the maximum eigenvalue of G is ob-
tained by φmax(G) = K(G)φmin(G);

• the spectral condition number K(B) and the minimum nonzero singular value
σmin(B) of the matrix B; the rank of B is chosen equal to min(m,n) and the
maximum singular value of B is σmax(B) = K(B)σmin(B);

• a solution x∗ of (1.1), with entries xi randomly generated from an uniform distri-
bution in (−1, 1);

• the number ma of the inequality constraints that are active in x∗; we denote by
nac the value ma + me, so that nac ≥ me;

• an m-vector
(

µ∗

λ∗

)
of the multipliers associated to x∗, with null elements for the

entries corresponding to the inactive inequality constraints in x∗, µ∗
i = 10−zi·ndeg

for the indices corresponding to the equality constraints and λ∗
i = 10−zi·ndeg for

the indices corresponding to the active inequality constraints; here zi is randomly
generated in (0, 1) and ndeg is an integer parameter which specifies the level of
degeneracy;

• the rank r(ZT GZ) and the spectral condition number K(ZT GZ) of the reduced
Hessian ZT GZ, where Z is chosen as an orthogonal basis of the null space of the
matrix given by the equality constraints and the inequality constraints active in
x∗.
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The matrix G of (1.1) is generated by its spectral decomposition

G = V DV T = V

(
D1 0
0 D2

)
V T(2.1)

where D is a diagonal matrix with maximum and minimum nonzero eigenvalues φmax(G)
and φmin(G) respectively, and r(G)−2 diagonal entries randomly generated in (φmin(G),
φmax(G)); in particular, the diagonal submatrix D2 of order n−nac has r(ZT GZ) positive
diagonal entries chosen so that the condition number of D2 is K(ZT GZ).
The matrix V is an orthogonal matrix obtained as product of a number of random Givens
rotations Rij such that the matrix G is filled until the prefixed level of sparsity is attained.
A random Givens rotation Rij is obtained by randomly generating two different positive
integers i and j in the interval [1, n]. Then we randomly generate a real number α in the

interval [−1, 1] and we set α = rj,j = ri,i = cos(θ); consequently, ri,j = −rj,i =
√

1 − r2
i,i.

Now, we partition the matrix V in
(

V1 V2

)
, where V1 and V2 represent the first nac

and the last n − nac columns of V respectively.

In order to generate the matrix of constraints B, we construct the m×n matrix
(

B̃
B̄

)
,

where B̃ is the nac × n matrix of the equality constraints and the active inequality
constraints in x∗, and B̄ is the (m − nac) × n matrix composed by the remaining rows

of B. We write
(

B̃
B̄

)
as follows:

B =
(

B̃
B̄

)
=

(
U1 0
0 U2

)(
S1 0
0 S2

)(
V T

1

V T
2

)
=

(
U1S1V

T
1

U2S2V
T
2

)
(2.2)

where S1 is a diagonal matrix of order nac with prefixed condition number K(B) and nac
positive diagonal entries included in [σmin(B), σmax(B)]; S2 is an (m− nac)× (n− nac)
matrix with min(m,n)−nac positive diagonal entries randomly generated and such that

the condition number of
(

B̃
B̄

)
is still K(B). The rank of

(
B̃
B̄

)
is min(m,n).

The matrices U1 and U2 are orthogonal matrices of order nac and m − nac respectively,
generated as product of random Givens rotations, so that we achieve the prefixed level

of sparsity for B in the matrix
(

B̃
B̄

)
.

From (2.2) we deduce that V2 represents an orthonormal basis for the null space of B̃:

B̃V2 = U1S1V
T
1 V2 = 0

Thus, if we put Z = V2, from the following relation

V T
2 GV2 = V T

2 ( V1 V2 )
(

D1 0
0 D2

) (
V T

1

V T
2

)

= V T
2 (V1D1V

T
1 + V2D2V

T
2 )V2 = D2

we have that the reduced Hessian has rank r(ZT GZ) and condition number K(ZT GZ),
as prefixed.
Then, we put

f =
(

B̃
B̄

)
x∗ −

(
0
ε

)
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where ε is a vector with positive random elements.
Finally, we obtain the n-vector q of the objective function in (1.1) from the Kuhn Tucker
conditions:

q = −Gx∗ + AT λ∗ + CT µ∗.
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Chapter 3

Implementation of the test
problem generator

A random test problem generator for large–scale sparse linearly constrained convex QP
problems, based on the technique described in the previous Chapter, is written in Fortran
77.
The source program, contained in the file test98.f, is available at the following URL:
http://www.unife.it/AnNum97/index2.htm.
An exhaustive documentation, about the input data that the user has to supply and
about the output files produced by the program, is reported in the comments of the
source file. At the same URL, it is possible to get a file containing an example of the
input data (inputtest98) and a file showing the messages produced by the program
(outputtest98).
In the following, we explain some details of the implementation of the test problem
generator.
The nonzero eigenvalues of G and the nonzero singular values of B can be randomly
generated in a convenient interval, according to a log–uniform distribution or an uniform
distribution or they can be equally spaced between the extrema of the interval in ques-
tion. If the input variable indg (or indb for the matrix B) is equal to 0, a log–uniform
distribution for randomly generating the eigenvalues of G (or the singular values of B) is
used; if indg = 1 (indb = 1, respectively) an uniform distribution is used; otherwise, the
eigenvalues of G (or the singular values of B) are equally spaced between the smallest
and the largest eigenvalues (or singular values). For the matrices G and B, the user
has to supply condg = log10(K(G)), condb = log10(K(B)), condzgz = log10(ZT GZ)
(≤ condg) and condba = log10(B̃) (≤ condb). Furthermore, the following data have to
be introduced:

• for the matrix G, the minimum positive eigenvalue glmin and the rank ngrango (G
is a positive semidefinite matrix); the maximum eigenvalue of G is 10condg · glmin;

• for the matrix ZT GZ, the minimum positive eigenvalue zgzlmin (≥ glmin) and
the rank nzgzrango (≤ ngrango − nac); the maximum eigenvalue of ZT GZ is
10condzgz · zgzlmin;

• the minimum nonzero singular value blmin of the matrix B; the rank of B is
min(m,n);

• the minimum nonzero singular value balmin (≥ blmin) of the matrix B̃; the rank
of B̃ is nac.
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Figure 3.1: Matrix G with a band structure (n = 2000, spars(G)=99.8%).

Figure 3.2: Matrix B with a band structure (m = 1000, spars(B)=99.8%).

Furthermore, the user has to supply the level of sparsity of G and B. We can also
generate band matrices with a prefixed bandwidth (see Figures 1–2).
Finally, we describe the technique used for storing the sparse matrices G and B. Each
matrix is stored in compressed form [8]. If we denote by kmax the largest number of
nonzero elements per row of a generic sparse nr×nc matrix A, the storage of A is made
in two nr × kmax matrices AS and IAS as follows:

AS(i, 1) = A(i, i) IAS(i, 1) = i

AS(i, j) = A(i, k) and IAS(i, j) = k if A(i, k) �= 0

An nr vector KAS contains, in the i–th element, the number of nonzero entries of the
i-th row of A. For example, when the matrix G is defined as

G =


 3 0 2

0 4 1
2 1 4


(3.1)

the compressed form is given by

GS =


 3 2

4 1
4 2 1


 , KGS =


 2

2
3


 and IGS =


 1 3

2 3
3 1 2


(3.2)

The program test98.f produces two unformatted files, containing the information about
the objective function and the constraints respectively. The nonzero elements of the
upper triangular part of the matrix G are stored in a set of consecutive records of the
first file, following a row wise ordering; each record contains the row index, the column
index and the value of four nonzero elements of G. For example, the matrix G of (3.1)–
(3.2) is stored in the first file as:

1 1 3 1 3 2 2 2 4 2 3 1 first record
3 3 4 second record.
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Figure 3.3: Matrix G without structure (n = 2000, spars(G)=99.9%).

Figure 3.4: Matrix B without structure (m = 1000, spars(B)=99.9%).

All the nonzero entries of the matrix B are stored in a set of consecutive records of the
second file with the same format used for G in the first file.
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Chapter 4

Numerical evaluation of the
routine E04NKF

In this Chapter we report the numerical results obtained by the routine E04NKF of the
NAG library [11] on a set of test problems generated by the technique described in the
previous Chapters. All the experiments are carried out on a Digital Alpha 500/333 Mhz
workstation, using the double precision (macheps= 2.22 · 10−16) and a Fortran program,
named test nag.f, available at the URL: http://www.unife.it/AnNum97/index2.htm.
This program reads the two unformatted files produced by test98.f and rearranges the
data according to the format required by E04NKF; then, this routine is called and its
results are written in the file nag.dat.
The routine E04NKF is designed to solve large–scale linear and quadratic problems with
the following constraints:

l ≤
{

x
Fx

}
≤ u

where F is a sparse m × n matrix. In the experiments reported in this Chapter, we
consider convex quadratic problems of the form (1.1), where simple box constraints are
not present and we have only general constraints (F = B). In this case, the user has to
provide a subroutine that computes the matrix–vector product Gx for any given vector
x.
The routine E04NKF is based on an active–set method. This is an iterative procedure
with two phases: a feasibility phase, in which the sum of infeasibilities is minimized to
find a feasible point [4, p. 166] and an optimality phase in which f(x) is minimized by
constructing a sequence of iterations that lies within the feasible region; each iteration
requires to solve a QP problem with equality constraints only [4, p. 240]. E04NKF is
based on SQOPT, which is part of the SNOPT package [6], that in turn utilizes routines
from the MINOS package [10]. It uses stable numerical methods throughout and includes
a reliable basis package for maintaining sparse LU factors of a convenient submatrix of
the constraint matrix [7].
In the following Tables, time denotes the elapsed time in seconds to execute E04NKF,
using default setting for all the optional parameters of the routine. The values erx and
erf denote the relative errors of the computed minimum point ‖x∗ − x‖2/‖x∗‖2 and of
the minimum value of the objective function |f(x∗) − f(x)|/|f(x∗)| respectively. Here
x is the approximate solution obtained by E04NKF and x∗ is the prefixed solution of
the test problem. When rank(G) < n, the minimum point is not necessarily unique and
erx is not meaningful. In all the test problems the eigenvalues of the matrix G or the
singular values of matrix B are uniformly distributed.
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Table 1. Different levels of the sparsity of the constraint matrices

n = 5000
spars(G) = 99.90% ‖G‖2 = 1 K(G) = 104

spars(B) time erx erf

me = 2500 99.96 19.7 7.2(-15) 4.0(-16)
mi = 0 99.94 21.9 3.8(-15) 5.2(-16)

‖B‖2 = 1 99.92 22.1 5.4(-15) 1.4(-16)
K(B) = 103 99.90 28.9 4.1(-14) 4.0(-16)

me = 3500 mi = 1000 99.93 75.9 7.3(-16) 1.0(-17)
nac = 500 99.87 78.0 4.3(-15) 1.3(-16)
‖B‖2 = 1 99.85 78.5 6.2(-15) 2.7(-16)

K(B) = 103 99.80 89.1 1.1(-14) 2.7(-16)

In the first set of experiments, we show that the performance of E04NKF is strongly
dependent on the sparsity of the matrices of the constraints and of the objective function.
In particular, strictly convex test problems with decreasing value of the sparsity of the
constraint matrix and of the matrix G are considered in Tables 1 and 2 respectively. In
both Tables, the matrices G and B of the second test problems have a band structure.
In these cases, the execution times have a slower increase as the sparsity of the matrices
decreases.

Table 2. Different levels of the sparsity of the Hessian matrix

‖G‖2 = 1 K(G) = 104

spars(B) = 99.95% ‖B‖2 = 1 K(B) = 102

spars(G) time erx erf

n = 3000 mi = 1000 me = 2000 nac = 200
99.95 14.8 3.7(-16) 2.3(-16)
99.85 22.8 8.9(-15) 4.4(-16)
99.80 26.0 6.0(-15) 1.1(-16)
99.60 46.3 2.6(-15) 1.1(-16)
n = 3000 mi = 1000 me = 2000 nac = 800
99.95 10.7 2.9(-16) 1.0(-17)
99.85 17.1 9.9(-16) 4.4(-16)
99.70 20.9 1.9(-15) 1.2(-16)
99.60 22.6 5.1(-15) 3.4 (-16)

Table 3 enables us to evaluate the performance of the first phase of the method used in
E04NKF; indeed, when we have strictly convex test problems with equality constraints
only and the number me of these constraints increases, the number n−me of the variables
that are free to move after the constraints are satisfied decreases. Consequently, the time
for improving the value of the objective function and for determining its optimal value,
decreases.
In Table 4, we consider strictly convex test problems with inequality constraints only,
where the number nac of active constraints in the solution increases. In these cases, the
routine E04NKF, since it is based on an active-set stategy, benefits by a small value of
nac, while its performance degrades as nac increases.
The numerical results of Table 5 are concerning convex QP problems with equality and in-
equality constraints. These results confirm the previous considerations about the strictly



Numerical evaluation of the routine E04NKF 13

Table 3. QP problems with equality constraints

n = 5000 mi = 0
spars(G) = 99.95% ‖G‖2 = 1 K(G) = 104

spars(B) = 99.95% ‖B‖2 = 1 K(B) = 10
me time erx erf

500 46.1 8.4(-15) 5.2(-16)
1000 51.9 2.0(-15) 1.0(-17)
1500 24.5 5.2(-16) 5.2(-16)
2000 20.8 3.3(-13) 1.0(-17)

Table 4. QP problems with inequality constraints

n = 3000 mi = 1500 me = 0
spars(G) = 99.9% ‖G‖2 = 1 K(G) = 104

spars(B) = 99.9% ‖B‖2 = 1 K(B) = 10
nac time erx erf

50 50.2 7.6(-16) 1.0(-17)
100 60.6 8.0(-16) 2.1(-16)
500 188.7 1.2(-15) 4.4(-16)
1000 286.0 1.9(-15) 1.0(-17)
1500 285.1 1.0(-13) 4.3(-16)

convex QP problems.
The chance of varying the features of the test problems produced by the generator,
enables us to draw the following numerical conclusions about E04NKF: this routine may
be an effective approach to solve large and very sparse QP problems when the number
of general inequality constraints that are active in the solution is small and/or we have
a large number of equality constraints.

Table 5. Convex QP problems with equality and inequality constraints

n = 5000
spars(G) = 99.90% ‖G‖2 = 1 K(G) = 104

spars(B) = 99.95% ‖B‖2 = 1 K(B) = 102

rank(G) rank(ZT GZ) me mi nac time erf

4500 400 4000 1000 50 31.5 2.0(-15)
4500 50 4000 1000 400 22.9 4.9(-15)
4500 1000 2500 1000 400 65.4 5.9(-15)
4000 500 3000 1000 400 35.5 3.0(-15)
4000 500 3000 1000 50 30.4 1.3(-15)
4000 2000 1500 1000 50 258.6 1.0(-15)
3500 400 3000 1000 50 26.4 2.8(-14)
3500 50 3000 1000 400 20.6 2.7(-14)
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