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Abstract

A well-known approach to the solution of large and sparse linearly constrained quadratic
programming (QP) problems is given by the classical projection and projection methods.
These methods have a similar iterative scheme consisting in to solve a sequence of QP
subproblems with the constraints of the original problem and an easily solvable Hessian
matrix. A theorem of convergence, resuming the main results about the projection and
splitting methods, is given for this general scheme.
In order to achieve an higher numerical performance than that obtained by the projec-
tion and splitting methods, we introduce two variants of an iterative scheme that use a
variable projection parameter at each step. These two variable projection—type methods
differ in the strategy used to assure a sufficient decrease in the objective function f(z).
We prove, under very general hypotheses, the convergence of these schemes and we pro-
pose two practical, nonexpensive and efficient updating rules for updating the projection
paremeter.
An extensive numerical experimentation shows that the variable projection—type methods
have an efficient behaviour.
These results are produced by a set of programs available at the URL:
http://www.unife.it/AnNum97/index2. html.
About the solution of the inner subproblems of the projection—type methods, we observe
that, when the structure of the constraints does not suggest a particular solver for the
QP inner subproblems, we can formulate each inner subproblem as a mixed linear com-
plementarity problem (LCP) that can be solved by the classical projected SOR method
of Cryer. When the number of constraints (and, consequently, the size of the inner LCPs)
is large, appropriate parallel splitting methods for LCPs can be used for the solution on
multiprocessor systems. Finally we describe two applications, arising in the framework of
data analysis, that involve QP problems suited to be solved by projection-type methods.
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PROJECTION—TYPE METHODS FOR LARGE CONVEX QUADRATIC PROGRAMS

CHAPTER 1

Introduction

Consider the linearly constrained convex quadratic programming (QP) problem

minimize f(z) = 22TGr+ ¢z

(1.1) subject to Czx =d, Az > b,

where G is a symmetric positive semidefinite matrix of order n, C' is an m, X n matrix of
full row rank (m. < n) and A is an m; x n matrix. We assume that the feasible region
K = {z | Cx = d, Az > b} is a nonempty polyhedral set and that f(z) is bounded
from below on K then, the set of optimal solutions of (1.1), denoted by K*, is also a
nonempty polyhedral set, given by K* = {x € K | E(x —2*) = 0, ¢ (z — z*) = 0},
where x* is a solution of (1.1) and F is a matrix such that G = ETE. For any x € K*,
f(z) = f*, where f* denotes the optimal value of (1.1).

When the matrices G, C and A are large, sparse and without a particular structure,
an approach for solving the problem (1.1) is represented by the classical projection and
splitting methods [25], [44], that are largely developed also for linear complementarity
and variational inequality problems. These last problems are related to (1.1); indeed,
since z* € K is a solution of (1.1) if and only if it satisfies the inequality

(Gz* + )T (x —2*) >0, forany =z €K,

the problem (1.1) can be considered as a symmetric affine variational inequality (AVI)
problem. Futhermore, when K = {x | z; > 0;i € Z C {1,2,...,n}}, the problem (1.1) is
equivalent to the following symmetric monotone linear complementarity problem (LCP)
(T ={1,2,...,n}) or mixed LCP (Z C {1,2,...,n})

u=Gz+q,
z; >0, u; >0, zju; =0, 1€Z,
wi=0, i¢T.

After a preliminary chapter that collects a set of basic definitions and results, in Chapter
3 we show that the introduction of a scalar parameter, known as projection parameter,
enables the classical projection and splitting methods to be unified in a common iterative
scheme; furthermore, the main features and convergence results related to these methods
are summarized.

In order to achieve an higher numerical performance than that obtained by the classical
projection and splitting methods, in [46], [47] and [48] we introduced two variants of an
iterative scheme that uses a variable scalar parameter at each step. These two meth-
ods, called variable projection method (VPM) and adaptive variable projection method
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(AVPM), differ in the strategy used to assure a sufficient decrease in the objective func-
tion f(x) and, consequently, the convergence of the schemes. In Chapter 4, we describe
these methods and we propose two updating rules for the variable projection parameter.
In Chapter 5, we discuss the solution of the inner subproblems.

In Chapter 6, we report the results of numerical experiments concerning the methods
described in previous chapters. In Chapter 7, we describe two applications, arising in the
framework of data analysis, that involve QP problems suited to be solved by projection—
type methods. In Appendix, we report the references to a set of Fortran 77 programs
used for the numerical experiments of Chapter 6.

In the sequel of the work, we denote by A,in(G) and Ajpe.(G) the minimum and the
maximum eigenvalue, respective}y, of a symmetric matrix G. For any matrix G, Gg
¢ G+2G

denotes the symmetric par of G. We indicate by ||z|| the usual Euclidean norm of

z and by ||z||¢ the elliptic norm of z defined as VT Gz where G is a symmetric positive
definite matrix. Furthermore, we denote by ||B|| the norm of a matrix B induced by the
vector Euclidean norm. Finally, we indicate by [z]* the orthogonal projection of a vector
z onto a closed convex set K, i.e., [z]" = argminyck ||y — z||, and by ¢(z) the distance
from x to K*, i.e.,

#(z) = min ||o — 7.



PROJECTION—TYPE METHODS FOR LARGE CONVEX QUADRATIC PROGRAMS

CHAPTER 2

Preliminary definitions and
results

In this Chapter we recall some definitions and results that are basic for stating the
convergence of the methods described in the next chapters.

LEMMA 1 [27] Let G be a symmetric matriz. There exist two positive scalars n and T
such that
(2.1) ¢(x) < 7llw = [z —(Gz + 9"

for any x € K, with ||z — [z — (Gz + )] | <n.

PROOF. See [27, pp. 45—46].

DEFINITION 1 A sequence of nonzero vectors {x*} converges R-linearly to a vector T if
(2.2) |lz* =% < ay®  forany &

for some scalars a > 0 and v € (0,1).

DEFINITION 2 A sequence of nonzero vectors {x*} converges Q-linearly to a vector T if

2"+ — 7

(2.3) lim supy,_, oo < 1.

[l* — |
For a detailed discussion about R-linear and Q-linear convergence, see [38].
LEMMA 2 [28] Let {x*} be a sequence of vectors in K satisfying
(2.4) lz* — 2711 < B(f(@*7Y) = f(2¥))  for any k> ko
for some scalar B > 0. If {f(x*)} converges R-linearly, then {z*} also converges al least

R-linearly.

PROOF. We observe from (2.4) that, for k > ko, {f(z*)} is a monotonically nonincreasing
sequence. Since f(z) is bounded from below on K, the sequence {f(z*)} is convergent
as k — oo. We denote by f the limit point of the sequence. Since f < f(z¥), for any
k > ko, from (2.4) and (2.2), we can write

(2.5) 2% — 2 12 < B(f(a" 1) = f) < Bay® Tt forany k> ko
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for some o > 0 and v € (0,1). Now, let k; be a positive integer such that

< ——= forany £k > k.

VBa

for some € > 0 and 5 = /7 € (0,1). Then, from (2.5) and (2.6), for & > max(ko, k) and
any positive integer m, we have

m
||xk+m - l‘kH — Zkari _ gkt
i=1
m m
< Z ”xk+i _ xk+i71” < \/ﬂiazikﬂrifl
i=1 i=1
1—7m
2.7 < ol <e
(2.7) < VBoy - <e

This shows that the {z*} is a Cauchy-sequence and, then, it is convergent. Let Z be the
limit point of the sequence {z*}; as m — oo, the inequality (2.7) becomes

Iz — | < Y5
1
5

for any k > max(ko, k1). Then {z*} converges to T at least R-linearly.

DEFINITION 8 A splitting of a matriz G is a pair of matrices (D, H) such that G =
D+ H.

DEFINITION 4 [37] (D, H) is a P-regular splitting of the matriz G if D is a nonsingular
matriz and D — H is a positive definite matriz.

LEMMA 3 If G is a symmetric positive semidefinite matriz and (D, H) is a P-regular
IERR
splitting of G, then D is a positive definite matriz and Apmqaz(Dg2GDg?) € [0,2).

=

PROOF. Since D = $G + (D — H), D is a positive definite matrix. Furthermore we
have that (D, H) is a P-regular splitting of G if and only if (D — H)s = D + DT —
G = 2Dg — G is a symmetric positive definite matrix. Then 0 < A,in (DS - %G) =

. s (r_1p~tnap-z)p: - s(r1_1p~3ap—%\pz ;
Amin (Dg (I — 5Dg*GDg? ) D5 ). Since D5 (I —5Dg*>GDg? ) D is congruent to
— 1D3?GD5?, it follows

L h=dap-t L h=4ap-t
(2.8) 0 < Amin <I—§DS GDy ):1_A,m <—DS GDg )
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CHAPTER 3

The classical projection and
splitting methods

The classical projection and splitting methods have a common iterative scheme which
consists in to generate, from an arbitrary vector 2°, a sequence of vectors {z*}, k > 1,
by solving the following QP subproblems

2
subject to Cx =d, Az > b,

i 1, 7D _ D\ k—I\T
(3.1) minimize gx° Sx+(q+(G—F)z" )

where p is a positive parameter, known as projection parameter, and D is a prefixed
symmetric positive definite matrix of order n. From the practical point of view, the
matrix D must be an easily solvable matrix (diagonal or block diagonal matrix).

When p = 1in (3.1), we refer to the iterative scheme as a splitting method (SM) while,
for p # 1, we have a projection method (PM).

The iterative scheme (3.1) appears convenient for the solution of large-scale sparse QP
problems, because it allows any sparsity of the objective and constraint matrices to be
readily exploited, uses little storage and is well suited to implementation on parallel
computers. Indeed, each iteration consists essentially in computing the matrix—vector
product (G — %)xk_l and solving the QP subproblem (3.1). For this subproblem, ac-
cording to the structure of the constraints of the application in question, we can use
specialized sequential or parallel solvers for separable or nearly separable QP problems
(see [36] and [41] as examples of solvers for separable quadratic programs with special
constraints). When the constraints do not present a particular structure, we can formu-
late each inner subproblem as a mixed linear complementarity problem (LCP) that can
be solved by sequential or parallel splitting methods (see Chapter 6).

In literature, there exists a vast collection of results regarding the convergence of the
projection and splitting methods.

In the case of strictly convex QP problems, the convergence of the SM is obtained in
[17] under the hypotheses that D is a symmetric matrix and (D, G — D) is a P-regular
splitting. In [18], using another technique in the proof of the convergence, we obtain that
the SM converges at least Q-linearly.

In the case of convex QP problems, the R-linear convergence of the SM is proved in [28]
under the hypotheses that D is a positive definite matrix and (D, G — D) is a P-regular
splitting of G. In this case, since D may be also an asymmetric matrix, 2* is the solution
of the following AVI subproblem

(3.2) (Dz* + (G = D)z" '+ ¢)T(x —2*) >0 forany = € K.
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When an iterative scheme is used for solving the inner subproblems (3.2), it is convenient
to consider an inner progressive termination rule, in the sense that the accuracy in the
solution of each subproblem depends on the quality of the previous iterate z*~!: the
closer zF~1 is to satisfying the external stopping criterion for the outer iteration, the
more accurately the corresponding subproblem is solved. In this way, unnecessary inner
iterations are avoided when z*~! is far from the solution. Following [30], [28] and [24],
this “inexact” solution of the AVI subproblem (3.2) can be viewed as “exact” solution of
the perturbed AVI subproblem

(3.3) (Dz* + (G —D)z* 1 +q+n* DN (2 —2*) >0 forany z€ K
where the “error” vector h*~! satifies the inequality:
(3.4) [R*H < (8 = e)fl® — 2|

with § = Anin(Ds — 3G) and € € (0,6]. The case k¥~ = 0 corresponds to an exact
solution of (3.2). From the computational point of view, when K does not present a
special structure, the AVI subproblem is generally more difficult than the QP subproblem
(3.1). Possible exceptions are the symmetric monotone linear complementarity problems
and the QP problems where m; = 0, 27 Gz > 0 for any x such that Cz = 0 and m. << n.
In this last case, each subproblem can be formulated [12] as a small-scale linear system
of the form

(3.5) CD1CTAN=d+ D 'C(G—-D)z* 4+ q)

and it can be solved by a direct method. Nevertheless, when the system (3.5) is of
medium—scale or large—scale, the choice of a symmetric matrix D enables a more efficient
conjugate gradient method to be used for its solution.

The convergence of the PM with D symmetric positive definite can be immediately
derived from the projection schemes for the variational inequality problems. In the case
of strictly convex QP problems, by proceeding as in [10], the convergence of {z*} can

be obtained by a contraction argument for p < %}%; the method has a Q-linear

3257 (2Amin(G) = PAmasr(GDT'G)))3. For convex QP
min(D)

problems, the convergence of the PM is proved under the sufficient condition p < ?‘sz
[33].

All the discussed projection and splitting methods can be included in a general iterative
scheme, consisting in to generate, from an arbitrary point z°, a sequence of vectors {xk},
k > 1, where z* is the solution of the following AVI subproblem:

convergence with rate (1 —

D DY\ % 1) k
(3.6) ;x + G—; ¥4+ q+h (x—2%) >0 forany z € K

where p > 0, D is a positive definite matrix and h*~! satifies the inequality:

(3.7) 1B Mo < (6 = €)llz" = 2" Ipg

1 1
with § = % — I Mnae(Dg®GDg?) and € € (0,6]. The following Theorem state the R-
linear convergence of the scheme (3.6)-(3.6), resuming the main convergence results of
the projection and splitting methods.

THEOREM 1 Let the problem (1.1) be feasible with G symmetric positive semidefinite
matriz and f(x) bounded from below on K. Under one of the following condition:
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e p=1and (D,G — D) is a P-regular splitting of G,
2

o D positive definite matriz and 0 < p < "
Amaxz(Dg 2GD

_1L

s%)

the sequence of vectors {z*} generated by the iterative scheme (3.6)(3.7) is well-defined
and converges to a solution of (1.1) at least R-linearly.

PROOF. Since D is a positive definite matrix and p > 0, the AVI subproblem (3.6) has
an unique solution z*; then, for & > 1, {z*} is a well-defined sequence of feasible points
of K.

Now, we consider the following equality

F@h) = £ = (Gat 4Tk — o)
(3.8) (e — kTG o),

Since z* is a solution of (3.6), from (3.6) computed at z = z*~! and (3.8), we can write

f(:vk) _ f(:L'k_l) < —(.’Ek _ xk—l)T <% _ %G) (:Ck _ :L'k_l)

(3.9) —ph=1T (g gk

From (3.7) and the hypotheses on D and p, we have

I 1 __1 _1
P& = 1) < (“amn (5 - 5D 0D )+ o) et -t i,
1 1 1 1
< <—; + 5)\mw(DS 2%GDS;) +4-— e> l|z* — mk71||2DS
(3.10) < —agllzf - 2P <o,

where oy = €\pin(Ds) and the equality to 0 holds when z*~! = zF € K*.

Then {f(x*)} is a sequence monotonically nonincreasing and, since f(z) is bounded from
below on K, it is convergent as k — oo and limy_,o0 f(2*) > f*. Thus, from (3.10), the
sequence {z¥ — 2*~1} converges to the null vector as k — co.

Now, we observe that the solution z* of the subproblem (3.6) can be considered as the
orthogonal projection of an appropriate vector onto K, i.e.

D +
311 = ot Dt o) (@it gniy)]
P

From the nonexpansive property of the projection operator and from ||R¥~Y|| < (§ —
€)Amaz(Ds)||z* — z¥Y| (see (3.7)), we have

e e (e I e el LA

D
(3.12) —a + [ — ;(x’“ —zF ) — (Gz*F T g+ REF

< agfla® — 21|

with ay = (2 + @ + (6 — e))\mam(Ds)>. Since {||z* —2*~1||} converges to 0 as k — oo,
the sequence {||z*~! — [z"~1 — (Gz*~" + ¢)]*||} also converges to 0 as k — co. Then,

given a positive scalar as, there exists an integer k& > 0 such that, for any k > k, we have

(3.13) o5 — A — (Gah L+ ) < ag
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Hence, by Lemma 1, there exists a scalar oy > 0 such that

(3.14) d(zF 1) < ay ||avk*1 —[z* — (G + @) forany k> k.
From (3.12), for any k > k, we have

(3.15) ¢(a"7!) < asfla” — Y|

with as = a4 - ag; since {||z* — z%~1||} converges to 0 as k — oo, the sequence {#(z*~1)}
converges to 0 as kK — oc.

Let z* the element of K* closest to %71, i.e. ¢(zF 1) = ||z¥ ! — z*||. From (3.6)
computed at z = z* and the Mean Value Theorem, it is possible to write

Dk ka k—1 i1\ ek
—(z" —=2" )+ Gz" +q+h (" —2z%) > 0,

P >
f(zh) = f@) = (G¢* +g)" (2" —2*),

where C* lies on the line segment joining z* with z*. Thus, combining the above relations,
we have

F@®) = = fa*) — f@")
(AWG)HC’“ o B [l @ka - xkln) e — 2.

IN

Now the following inequalities hold:
168 ="M <l — 27+ IcF — ],

I¢¥ = 27 < [l = 2| + [l2* = ¢Fl,

and
& — 2| = [I¢* — 2| + [|l=* — ¢¥||.

By adding the first two inequalities and using the last equality, we obtain
167 = 2" < fla® = 2" 4 2 =2t =l =T+ g,
From the above inequality and from [|z* — z*|| < ||z* — 2%~ || + ¢(2* 1), we obtain
f@*) = 7 <
(Amaz (G)([l2® =7 + ¢(2* 1)) + (6 — ) Aman(Ds)[le* — ]+

WPt ot ) it = 1)+ o),

From (3.15), for k > k, we can write
F(a*) ~ J* < aglla —a* 1|2

with ag = (AW(G)(@5 +1) 4+ (6 — )Amae(Ds) + @) (a5 +1). Then, from (3.10),

we have

(3.16) fah) - fr <

By rearranging terms in (3.16), we obtain

(6753 -

(f(xkfl) — f(mk)), for any k> k.
a1

f(x’“)—f*ﬁﬁ(f(w’“’l)—f*), for any k> k,
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and then {f(z*)} converges at least linearly to f*. Since (3.10) holds, it follows from
Lemma 2 that {z*} converges at least linearly. Since {¢(x*)} converges to zero as k — oo,
the limit point of {*} is an element of K*.

In general, D is chosen as a symmetric matrix and the subproblems (3.6) become strictly
convex QP problems of the form (3.1). In this case, under the assumption that (3.1) are
exactly solved, the assertions of Theorem 1 can be also proved by different techniques
(see [47]).

From the viewpoint of the numerical effectiveness, in the splitting methods the practical
requirement to select an easily solvable matrix D is very often in conflict with the choice
of a splitting of G that implies fast convergence (unless the splitting is suggested by the
underlying application; see, for example, Table 14 in Chapter 6, where we show the results
of numerical experiments concerning the quadratic program arising in the constrained
bivariate interpolation problem [16], [17]). In [18] an acceleration technique is proposed,
consisting in computing the iterate z* by the formula:

(3.17) zF = 2h =t g (yF — 2P

where  y*  denotes  the solution of the subproblem  (3.1) and
0 = arg minee(oyl]f(a:k_l +0(y* — z*=1)). This correction step does not introduce addi-
tional matrix—vector products (see Chapter 4 for details) and the numerical experiments
show that the reduction in the number of iterations is equal at most to 10%.

On the other hand, the projection schemes allow any symmetric positive definite matrix
D to be selected, but the values of p that satisfy the sufficient convergence conditions
are often so small as to determine very slow convergence. Furthermore, in some cases, it
is possible to find values of p that do not satisfy the sufficient convergence condition and
imply a fast convergence (see Chapter 6).

The drawbacks of the classical splitting and projection methods are avoided in the mod-
ified projection—type methods by introducing a correction step after the solution of each
QP subproblems. One of the most general modified projection-type methods (MPM) is
the scheme proposed in [49] in the context of the solution of monotone affine variational
inequality problems. Starting from an arbitrary vector z°, this scheme consists in to
generate a sequence {z*}, where z*, k = 1,2, ..., is obtained by a projection step that
computes the solution y* of the following QP subproblem:

minimize %xTx +(q+ (G- Dz YT

(3.18) subject to Cx =d, Az > b,

followed by the correction formula:

(3.19) ¥ =y PTYHI 4 G)(yF - 2P
with . 112

1P~5(1 + G)(y* — ak-1)|>

Here P is a symmetric positive definite matrix and 6 is a parameter in the interval
(0,2). When § =1 and P = I 4+ G, we have the projection and contraction method
proposed in [21]. For appropriate choices of P (e.g. P = I + G), the correction step
does not introduce additional matrix—vector products. The performance of this scheme

is strongly dependent on the choice of P, § and on the scaling of G and ¢, as emphasized
also in [49].
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CHAPTER 4

Variable Projection-Type
Methods

In the framework of the QP problems, the classical projection and splitting methods are
known also as scaled gradient projection methods “with constant stepsize” [4, p. 207].
In order to avoid the difficulty in finding a convenient value for the projection parameter,
a limited minimization rule is introduced in the iterative scheme, giving rise to a scaled
gradient projection method with a “limited minimization rule”; indeed, (as in the MPM)
the iterate z* is obtained by the correction formula:

(4.1) 2k =Pt o (yF — 2,

where y* denotes the solution of (3.1) and ), = argminge g 1) f(¢* =" +0(y* — z*71)). A
convenient value for the projection parameter can also be obtained by making a search
along the projection arc (scaled gradient projection method with an “Armijo rule along
a projection arc” [4]). In particular, given p > 0 and denoted by z*(p) the solution of
the subproblem (3.1), the iterate z* is equal to z*(3™p) where m is the first nonnegative
integer for which the following Armijo-like inequality holds:

FEN) = £ ("(8™P) 2 oV THT (7 — M (57D))

where 5 € (0,1) and o € (0,1) are prefixed scalars.

Another way to improve the projection methods consists in using, at each iteration,
a variable projection parameter; on this idea is based the variable projection method
(VPM), introduced in [46] for strictly convex QP problems and in [47], [48] for convex
QP problem. The projection parameter is updated according to a nonexpensive rule,
deduced by heuristic considerations, and the convergence of the method is obtained
under weak hypotheses by combining the projection step with a correction rule of the
form (4.1), as in the scaled gradient projection methods with a “limited minimization
rule”.

In [47] and [48] we also introduce a variant of the VPM, named adaptive variable projec-
tion method (AVPM). In this last method, the value of the projection parameter given
by an updating rule is adaptively reduced until the projection step produces a sufficient
decrease in the objective function. In practice, the VPM and the AVPM generalize the
above scaled gradient projection schemes with a “limited minimization rule” and with an
“Armijo rule along a projection arc”, by introducing a rule that determines a convenient
value for p at each step.

In the following we describe the VPM and the AVPM and we recall Theorems on the
R-linear convergence of these schemes.
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4.1 The Variable Projection Method

Given a symmetric positive definite matrix D, the VPM for the solution of (1.1) can be
stated as follows:

1. Let z° be an arbitrary vector and p; be an arbitrary positive constant; k « 1;

2. Compute the unique solution y* of the subproblem

minimize %mTPQka: +(g+h 14+ (G- ka)wk—l)Tx

4.2
(42) subject to Cux =d, Az > b;

3. Set d¥ = yF — k1,

4. If (Gz*=! + ¢)Td* < 0 and k # 1, compute the solution 6y, of the problem

(4.3) min{ f(z*~! +60d*); 6 € (0,1]};
else
0, = 1;
5. Compute
(4.4) o* =2k g,d;

6. Terminate if z* satisfies a stopping rule, otherwise update pj,; by an appropriate
rule; then k < k4 1 and go to step 2.

The aim of the initial step of the scheme is to generate, from an arbitrary point z°, a
vector ' € K. When Amin(D) is easily computable, a convenient value for p; is p; =
1/2

Amin(D)/ (ZLI > i g%) / , where g;; is the ij-th element of G; this value satisfies the
sufficient convergence condition for the step size of the projection methods and guarantees
that ||2! — 2*||p < ||2° — z*||p, with 2* € K*.

When the computation of DzF~! is nonexpensive, the computational complexity of one
iteration of the VPM is essentially equal to that of the projection methods. Indeed, if we
keep stored from the previous iteration the vector t = Gz* ', at the k-th iteration the
computation of 8, requires the matrix—vector product f = Gy* and some less expensive
vector operations. Now, the vector ¢ is updated by the following rule:

t < t+0g(t—1).
We will prove the convergence of the VPM under the following assumptions:

AS1. @G is a symmetric positive semidefinite matrix, K is a nonempty set and f(z) is
bounded from below on K;

AS2. D is a symmetric positive definite matrix and the sequence of scalars {p;} is
bounded from below and above by positive constants: 0 < p,, < pr < pur;

AS3. the sequence of the error vectors {h*} satisfies the following condition:
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)\min D —
(4.5) [ < <7p( ) —ék) ly* ==Y k>
k

3 Amin (D
with €, € [#, o

The assumption AS2 on {py} is very general; the choice of a particular bounded sequence
{pr} is based only on its numerical effectiveness. The case of a constant projection
parameter is a special case of this.

The following Lemma states some basic assertions for the convergence of the VPM.

Amin(D)]'

LEMMA 4 If, for a given k > 1, z*=1 is feasible to (1.1) and x*~1 # y*, then the
following assertions hold:

a. y* is well-defined and is a feasible point of (1.1); furthermore, d* is a descent

direction for the objective function f(z) in 8 1;

b. the sequence {0} satisfies the following bounds:

)‘min(D)

4.6 0 < Opin = min 4 1, ——mim =)
( ) { pMAmaz(G)

}Sﬁkgl, for any £ > 1.

PROOF. a. For the uniqueness of the solution of the linearly constrained strictly convex
subproblem (4.2), y* is well-defined and it is a feasible point of (1.1). Furthermore, we
consider the first order optimality condition for the solution y* of the subproblem (4.2):

D T
(4.7) <p—k(y'c — P+ GaF T 4 g+ hk1> (xr —y*) >0, foranyze K.

Taking x = z*~! in (4.7), since ka is a symmetric positive definite matrix and z*~1 # y*,

we obtain from (4.5) that d* is a descent direction for f(z) in z*~1:

D
(Gz" !+ q)Tdt < _d*T 2 gk _ g1 T gk
Pk
(4.8) < <— D) | Amin(D) _€k> Al
Pk Pk
< 2minlD) e g
PM

When zF~! = ¢*, then 2*~1 € K*.
b. For k > 1, the exact solution of the problem (4.3) is given by the following rule:
: (Ga* 14 q)"d* e kT vk
(49) ok: mln{—W,l} if d Gd #0
1 otherwise.
From (4.8) and (4.9) the assertion b immediately follows.

THEOREM 2 The sequence {z*}, k > 1, generated by the VPM is a well-defined sequence
of vectors of K and it is convergent to a solution of (1.1) at least R-linearly.

ProOF. Since #(!) € K, from the assertions of Lemma 4 and the convexity of K, it
follows that {z*} is a well-defined sequence of feasible points of (1.1) for k > 1.
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From (4.3), (4.4) and the following equality:

1
(4.10) F@b 1+ 0d%) — FaF 1) = 0(Gz" L + )Td" + 592d’“TGd’“,
we have )

(4.11) F(&*) < F(@¥ 1) + 0(Ga* ! + ¢)Td* + 592d’“TGd’“,

kT (v 7k (Ga* ' 4q)Td" ;
for any 6 € (0, 1]. If d*" Gd* = 0 or — ZZ7r 55— > 1, the solution of the problem (4.3)
is obtained for 0 = 1; from (4.6), (4.8) and (4.11) we have

f(:l,’k) S f(l‘kil) + %(szfl +q)Tdk

(412) < paty - 2D g
PMm
i Amin(D)B
< g1y = 2minlD)Vmin g e
< flak) - R D gt
If d*TGd* # 0 and —% < 1, the solution of the problem (4.3) is obtained for
O, = — (G2 074" from (4.6), (4.8) and (4.11) we have

f(xk) S f(xkfl) _ 1((G$k71 + q)Tdk)2

2 dFT Gdk
(4]_3) — f(:l,‘kil) + %(G:pkfl —I—q)Tdk
— Am,in D omin
< gt - AminDPmin e
M

Thus, if g = %’ from (4.12), (4.13) and (4.4), we conclude that

fa*h) = f(=)

A\

al g k—
ar|d*||? = gl - HPP

(4.14) 2
aylz* — 2511 > 0,

\Y

where the equality to zero holds when 2%~ = ¢* = zF € K*.

Since f(x) is bounded from below on K, the sequence {f(z*)} is convergent and
limy_, 00 f(z%) > f*. Thus, from (4.14) we have that the sequences {d*} and {z* — z*~1}
converge to the null vector as k — oo.

Now, we observe that the solution y* of the subproblem (4.2) can be considered as the
orthogonal projection of an appropriate vector onto K, i.e.

D +
yk _ yk _ E(yk _ mk—l) _ (ka—l +q+ hk—l)] )

From the nonexpansive property of the projection operator, we have
||wk71 _ [mkfl _ (ka,1 + q)]+|| _ ||xk71 _ [xkfl _ (ka,1 + q)]++

(4.15) —y* + [y - pB(y'c — k) = (Ga" ! 4+ g+ BET)IT
k




VARIABLE PROJECTION-TYPE METHODS 15

2 + A1'n,aa:(l))"'ATnin(l)

with ay = ( )>. Since the sequence {||d*||} converges to 0 as k — oo,

m

the sequence {|lz*~! — [zF~1 — (Gz*~! 4 ¢)]T||} also converges to 0 as k — oco. Then,
given a positive scalar ag, there exists an integer £ > 0 such that, for any k > k, we have

2"~ = 2" = (Ga*7! + )] "]l < as.
Hence, by Lemma 1, there exists a scalar ay > 0 such that:
e e e (G ) A [ S e
From (4.15), for any k > k, we have
(4.16) ¢(z"7") < asd”|

where a5 = ay - ag; since {||d*||} converges to 0, the sequence {¢(z* 1)} also converges
to 0 as k — oo.

Let z* be the element of K* closest to zF~1 i.e. ¢(zF~1) = ||zF~! — 2*||. From the first
order optimality conditions for the problems (4.2) and the Mean Value Theorem, it is
possible to write:

Dk k-1 k—1 bt ek
— (" —2") + G g+ h (x* —y®) > 0,

Pk o
fF) = fa*) = (GCF + )T (v — %),

where C* lies on the line segment joining y* with z*. Thus, combining the above relations,
we have

S~ 1 =1 - 1)
Ama:): D *
< (Amasl@ICE = =1+ 4 2B ) gy - 7.

Since [|¢F — 2F 71| < @(zF71) + [|d¥|| and [ly* — 2| < @(zF1) + [|dF]], from (4.5), we
obtain

F) =1 < (nael@) (90 + )
iDL s By ) (gt + ).

m

+

From (4.16), for any k > k, we can write
F(y*) = 1 < aglld”|)?

where ag = (/\maz(G)(Oés +1) + W) (a5 +1). Then, from (4.3), (4.4) and
(4.14), we have

(4.17) Fa*) - < j—j(ﬂx’“*l) —f(a*), Vk>FE
By rearranging terms in (4.17), we obtain
fah) = < ST = ), VRS

and then {f(z*)} converges at least linearly to f*. Since (4.14) holds, then it follows
from Lemma 2 that {2*} converges at least linearly. Since {¢(z*)} converges to zero as
k — oo, the limit point of {*} is an element of K*.
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4.2 The Adaptive Variable Projection Method

Given a symmetric positive definite matrix D and two positive scalars 5 € (0,1) and
n > %, the AVPM for the solution of (1.1) is stated as follows:

1. Let z° be an arbitrary vector and p; be an arbitrary positive constant, k < 1,
pr = Py, mi = 0;

2. Compute the unique solution z(py) of the subproblem

minimaize %pr%x + (g + h(pr) + (G — Q)xk—1)Tx

4.1 P
(4.18) subject to Cz =d, Ax > b; '

3. Set d* = z(py) — z* L

4. If —(Gz*t+¢)Td* < ndkTGdk and k # 1, then my = my + 1, p, = 5™+, and go
to step 2, otherwise z* = z(py);

5. Terminate if 2* satisfies a stopping rule, otherwise update pj; by an appropriate
rule; then oy, = pr41, Meg1 =0, k < k + 1 and go to step 2.

The computational complexity of each iteration of the AVPM depends on the number
my + 1 of inner subproblems that have to be solved to find a convenient value for pg.
Since the test at the step 4 requires the matrix—vector product Gz(py), each iteration of
the AVPM is essentially equivalent to my + 1 iterations of the projection methods.

As in the iterative scheme of the VPM, the aim of the first step is to find an initial
feasible point x!.

We will prove the convergence of the AVPM under the assumptions AS1 and AS2 for the
VPM and the following condition:

AS4. the sequence of the error vectors {h(py)} is such that

419 1ol < min (Pnan(@), (2222 - ) o) - 4|

Pk
)\min D )\min D
k> 1, with ¢, €| ( ), ( )].
PM Pk

First, we observe that the vector z(py) satisfying the condition
(4200 —(G* 4 )T (w(pr) — 251) = m(a(pe) — 25T Glalpr) — V)

can be found after a finite number of trials. Indeed, if we consider the first order opti-
mality conditions of the subproblem (4.18) computed in z = 2*~!, we have

(GzF =+ g (@ —alpr) = 5@t —2(pn)) " D — a(pr))
—h(pr)" (& = 2(pr)).-

If my, is the first nonnegative integer such that

(4.21)

A mi < - v 7
(4 22) B pk = 277)\maz(G)’

then the condition (4.20) is satisfied for py, = ™.
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The inequality (4.22) states a very strong sufficient condition; from the viewpoint of the
numerical effectiveness, it is advisable to define the projection parameter by a nonex-
pensive rule that gives values of p; greater than that obtained by (4.22) and such that
my, = 0 for almost all k.

Now we prove the convergence of the AVPM for convex QP problems.

THEOREM 3 The sequence {x*}, k > 1, generated by the AVPM is a well-defined se-
quence of vectors of K and it is convergent to a solution of (1.1) at least R-linearly.

PROOF. Since the solution of the subproblem (4.18) is unique and, at each iteration, the
steps 2, 3 and 4 of the AVPM are repeated a finite number of times, z* is a well-defined
element of K.

Now the proof of the theorem runs as those of Theorems 1 and 2. First we prove that
the following inequality holds:

(4.23) F@* ) = f@*) > agla® — 2|2

where «; is a positive scalar.
Since z* is such that the condition —(Gz*~! + ¢)T(z* — 2F~1) > n(z* — 2*"HTG(2* —
zF71) holds, we can write
F) - f@) = (GaF 4 Tk — 2

1
+§(:Ck _ ;Ck_l)TG(a?k _ mk—l)
(G‘kal + q)T(IEk _ xkfl)

1

LA k-1 Tk k=1
277(G:zc +q)" (2" —2")

< <1 - %) (Gt + )T (aF — 2% 1),

(4.24)

IA

From (4.21) with z(pg) = =¥ and (4.19), it follows that
(4.25) F@®) = (@) < —anlla® — M2

where a; = <1 - %) A’";;M(D) and (4.23) holds. Then {f(z*)} is a sequence monoton-

ically nonincreasing and, since f(z) is bounded from below on K, it is convergent as
k — oo and limy_,o, f(z*) > f*. Consequently, the sequence {z* — z*~1} converges to
the null vector as k — oo. Now, we can prove that

e e (e e e e (i

(4.26) ok - p’ik@c’“ ~ ) (G 4 g+ B

< agfla® — 271

2 _|_ Amaz (D)+)‘m1n(D)

with ag = ( Since {||z* — z*71||} converges to 0 as k — oo,

the sequence {||:vk’1 —[zF = (Gz*t + q)]*H} also converges to 0 as £ — oo. As in
Theorem 1, we can state that, for any k greater than a convenient k, we have

(4.27) |25t = [zF = (G2F T+ )] < a3

(4.28) ¢ ) S aq et~ [2F T - (G 4 )|
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and, finally,
(4.29) ¢(z" ) < agllz® — 2|

where a5 = a4 - ay; since {||z¥ — 2%~ 1||} converges to 0 as k — oo, the sequence {¢(z* 1}
converges to 0 as kK — o0.

Let z* the element of K* closest to z*71, i.e. ¢(z¥~1) = ||z*~1 — z*||. From the first
order optimality condition for the solution z* of the subproblem (4.18) computed at
x = z* and the Mean Value Theorem, it is possible to write

D T
(et a4 6t gt b)) @ - a0
k

f(@*) = f(z*) = (G + @) (aF — 2¥),

where ¢* lies on the line segment joining x* with z*. Thus, combining the above relations,
we have

f@®) = fr=fah) - f(z")
= (A’"az(G)IICk = 2"+ [h(pw) | + Amp;(mﬂﬂfk - w’””) lz* = 2.

m
and, for k > k, we can write
Fla¥) — * < ot — P

with ag = (AmaI(G)(a5 +1)+ W) (a5 +1). Then, from (4.23), we have

Qe

(4.30) f@®) = < =2(f(*1) = f(z*)), for any k > k.

aq

The R-linear convergence of {z*} follows as in Theorem 1.

4.3 Updating Rules for the Projection Parameter

The numerical behaviour of the variable projection methods depends on the choice of the
sequence of projection parameters {p;}. The only hypothesis required on {p;} for the
convergence of these methods is that the sequence is bounded. Then, at the k-th iteration
we can try to identify a “good” value for p; on the basis of heuristic considerations from
the last values of the quantities involved in the iterative scheme. In this way we can find
some updating rules for varying the projection parameter in the VPM and in the AVPM.
Of course, these rules can have different numerical effectiveness.

We may consider an updating rule for p; to be numerically efficient when it enables an
approximate solution to (1.1) to be obtained by a number of iterations of the VPM and
the AVPM significantly lower than that of the classical projection and splitting methods.
At the same time, the introduction of this rule must not increase the computational
complexity of one iteration and must imply that the corrective step along a descent
direction in the VPM and along a projection arc in the AVPM is present only in few
iterations, i.e. 0 = 1 and, above all, my = 0 for almost all k.

In the following, we propose two updating rules.

The first is given by

_ f GdF—12 < dk—112
43 pe={ Mg o 1Ol

TiTapoigge—T Otherwise
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where d¥~1 = y*~1 —2%=2 in the VPM and d*~! = z*~1 —2*~2 in the AVPM. The positive
scalar 1 is a prefixed small tolerance. The rule is a generalization of that proposed in [46]
for strictly convex QP problems and it is deduced from the following considerations. We
assume that the subproblem (4.2) is exactly solved, R~ = 0, for any & > 1 and {z*}
converges to £* € K* as k — co. By rearranging the first order conditions for problems
(1.1) and (4.2) we obtain

lz* = y* | < (=" = 2" )T (D - ;G) (2" = o).

This last inequality holds in the VPM; for the AVPM we can substitute y* with z*. Now,
by using the Cauchy—Schwarz inequality, we obtain

l2* = y* | < [1(D = p@G) (&* = ")l p-2[l2* = y*|Ip
and, after dividing through by ||z* — ¥*||p, squaring and expanding, we have
lo* = y*|Ih < mlla” — 2" YD,

where

- 1— Pk (2( * kfl)TG( * kfl) +

TR = Tor = 2T, -z ¥t —x
D
_Pk(m* _ :Uk_l)TGD_lG(:L'* _ ;Ck_l)).

If (z* — 2F"HTGD1G(2* — 2*~1) # 0, the quantity 74 is minimized for

(@ -G -y
Pr = (z* — 2 1)TGD-1G(z* — z+-1)’

then, we can try to obtain a "good” value of p; by using z*~2 in place of the solution
x*. For the VPM, we observe that 2*~' — 2¥=2 = 6,_,d*~'. Since the vector Gd*~' is
already computed, the updating rule does not increase significantly the computational
complexity of each iteration of the VPM and the AVPM.

In the context of the projection methods for variational inequalities, a similar value for
the step size p has been deduced, again by heuristic arguments, in [14].

With the choice (4.31), in the VPM the sequence {px} is bounded from below and above
as follows:

min <p1, ;’”L((Z;) < pr. < max <p1, )‘m”(G)d:\m”(D)> ,

where the bounds are obtained by using the inequality =" Gz > 27 [|Gz|]?.

In the AVPM, because of the adaptive procedure for determining pj, the resulting se-
quence {p} is bounded from below and above in the following way:

i <p1 Amin(D)  BAmin(D) Amin(D) )\maw(G))\mM(D))
" Mnaz(G)’ 27 Amax (G) P (G v :

) < pr < max <p1,

Another updating rule for p; may be suggested by the inequality (4.20) when we assume
h(pr) = 0:
dkTde

_ it d*T Gk
oo = grgar 4TGE£0,
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where d* = z(p;) — 2% 1. Since x(pi) is not available, we use z*~2 instead of z(py),
obtaining the following rule for the projection parameter:

Pk—1 for ||Gd*|]> < of|d )2
L3 _ - B =2,3,...
(4.32) Pk { % otherwise o

dF¥—1 = 2F~1 — =2 and ¢ is a prefixed small tolerance. In the VPM we can use the rule
(4.32) with d*~! = y*~1 — k=2 and n = 1. Consequently, in the VPM the new sequence
{pr} is bounded as in the previous case while, in the AVPM, the bounds for the new
sequence {py} are:

. ,B)\min(D) )‘min(D) 2Mmaz (D)Amaw(G)
. <” b 2nAm(G)> < Pr < max (” Y M Aman (G)’ " > ‘




PROJECTION—TYPE METHODS FOR LARGE CONVEX QUADRATIC PROGRAMS

CHAPTER 5

Solution of the Inner QP
Subproblems

In all the projection-type and the splitting methods, as well as in the VPM and the
AVPM, it is required to solve a sequence of strictly convex QP subproblems, having the
following form
(5.1) minimize %I‘TAx +¢ 1Ty

) subject to Cx =d, Az > b,

where ¢* ! = (G — A)z* ' +¢q, k = 1,2,..., and A is an easily solvable matrix, for
instance a diagonal or block diagonal matrix.

When the constraints have particular features, we can use specialized inner solvers. For
example, for single constrained separable strictly convex QP problems with simple bounds
on the variables see [36], [41] and references therein; for equality constrained strictly
convex QP problems with simple bounds on the variables see the dual ascent methods
in [25].

When the set of constraints does not present a particular structure, it is possible to
formulate the subproblem (5.1) as a mixed LCP [25]. Indeed, by using the Karush—
Kuhn-Tucker optimality conditions, we can derive the solution Z of (5.1) in terms of its
corresponding Lagrange multipliers \ and fi:

st
o (8)=(42)+2(0)

u>0, A>0, u"A=0

T=A"Y—q¢"T+ATXN+CTh)

=l

> is the solution of the following mixed LCP:

where zf_l =—b— AA" ¢k T, z§_1 = —d — CA~'¢*"' and the matrix
A —1 /4T T
(5.3) M = <C> ATH(AT O

is a symmetric positive semidefinite matrix of order v = (m; +m,) with positive diagonal
entries. The mixed LCP (5.2) is solvable because it arises from the strictly convex QP
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problem (4.18). In the case of equality constraints only, M is the symmetric positive
definite matrix CD1CT and (5.2) is reduced to the following positive definite linear
system:

(5.4) My = —257"1

Thus, we can determine the solution of (5.1) by solving an equivalent problem whose size
is equal to the number of constraints.

When this number is small, we can solve the problem (5.2) or (5.4) by direct methods.
In the case of large—scale sparse symmetric monotone LCPs, it appears convenient to use
again a splitting iterative scheme, such as the classical Projected SOR scheme of Cryer
[9] and the Projected Symmetric SOR scheme of Mangasarian [29]. In these schemes,

. . A .
starting from an arbitary vector <N0 >, with A\¢g > 0, we can generate the sequence of
0

vectors (21 >, by solving a sequence of mixed LCP subproblems, such as (i = 1,2, ...):

3

k—1
u z A A
5.5 =("1_ i1 P
(5:5) <0> <ZS 1)+Q(um>+ <u>
uw>0, A>0, uTA=0

where (P,Q) is a P-regular splitting of M. The convergence of an iterative scheme
as (5.5), can be derived from Theorem 1, by observing that the subproblem (5.2) is
equivalent to the following convex QP problem:

T k—1\T
L 1 A A 21 A
5 M _
(5.6) minimize s <H L + z§ 1 y

subject to A >0

(see [11], [26]).

On parallel computers, we can easily achieve an efficient implementation of the projection
type and splitting methods, as well as of the VPM and the AVPM, by distributing the
matrix—vector products and the vector operations on the available processors and by
using a parallel inner solver for the LCPs. A simple parallel solver for LCP is obtained
by considering a splitting of the matrix M such that each iteration can be decomposed in
independent processes. In [20] we show the effectiveness of the this approach in the case
of a splitting method for QP problems combined with the Parallel SOR [31], the Parallel
Gradient Projection SOR [32] and the Overlapping Parallel SOR [19] for the solution of
the large inner LCPs.

When the inner subproblem (5.1) can be reformulated in the linear system (5.4), we can
use as iterative solver the Preconditioned Conjugate Gradient Method, that is also well
suited for implementation on parallel computers. The absence of a particular structure
in the matrix M suggests to use as preconditioner the classical SSOR preconditioner [13]
or the Arithmetic Mean preconditioner [15].

In the following we describe two splittings of M that give rise to different parallel solvers
for the LCP.

5.1 Parallel solvers for symmetric LCPs

Consider the following feasible LCP:

u=Mz+g
(5.7)
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where M is a symmetric positive semidefinite matrix of order v, with positive diagonal
entries. !

In order to introduce parallel iterative schemes for this problem, we partition the matrix
M into p submatrices as follows:

M,
M>
(5.8) M=
M,
where MI = (Mi,l Mi,Q MivP)’ Mi,j = (m;j”lj)>, ’L,_] = 1,...,]3, are v; X vj
p
matrices with Z v; =vand M;; = MZTJ

i=1
If we write M;; = L; + A; + LT, i =1,...,p, where L; is the strictly lower triangular

70

part of M;; and A; its diagonal part, and we consider

(5.9) P = diag (E;'Ay+ Ly,...,E, Ay + L)
Q = M-P
where F;, i = 1,...,p, is a diagonal matrix of order v; with nonzero entries w,(:), k=

1,...,v;, the splitting M = P + @ generates the parallel iterative scheme proposed in
[31], called Parallel SOR (PSOR) method. Starting from an arbitrary v—vector z° > 0,
the PSOR method generates a sequence of vectors 2% = (w7, ... ,WZ)T, by solving at

each step p independent LCPs:

»
U; = (E:lAZ + Li)Wi + (Al — E;lAZ‘ + LZT)Zlkil + ZMiijjkil + g;
j=1
i#i
uiZO, WiZO, ’U,ZTWZ‘:O i:1,2,...,p
where w;, g; and u; are v;—vectors and g = (g¥,... ,gg)T, u=(uf,... ,ug)T.
On a parallel computer with p processors, each of the p independent LCPs can be solved
on a different processor.
If the following condition holds

i 2
(5.10) 0<w < =
1 (i-7)
L+ m(m) Z Z |mk,l |
ko i=1 1=1
J#i
(k=1,...,v; i=1,...,p), for any 2° > 0, the sequence {z*} is convergent to a solution

of (5.7) as k — oco. Indeed, in this case, it is immediate to prove that P+(Q is a P-regular
splitting of the symmetric positive semidefinite matrix M.

We point out that for p = 1 and w;, = w for any k, we have 0 < w < 2 and PSOR is equal
to the Cryer’s method [9]. For p > 1, the convergence condition (5.10) imposes that the
relaxation factors w}'c must be in intervals whose upper bounds are less than 2 and this
can lead to a slow convergence.

For a given matrix M without a quasi-band structure, generally the upper bound for w,ic
decreases as p increases and, consequently, the number of iterations of the PSOR method
may increases as the number p of available processors increases.

LFor simplicity, we consider the standard form of the LCP; it is easy to derive the following consid-
erations for the special case of a mixed LCP.



24 PARALLEL SOLVERS FOR SYMMETRIC LCPs

To overcome the disadvantage of the PSOR method, Mangasarian and De Leone pro-
pose in [32] a gradient projection-SOR (GPSOR) algorithm that, when appropriately
parallelized, converges with the relaxation factors in (0, 2).

In order to summarize this approach we consider the following convex QP problem

minimize ¢(z) = 12T Mz + g7z

2
(5.11) subject to z >0

and note that the LCP (5.7) express the optimality conditions for (5.11).
The GPSOR method generated by the splitting M = P 4+ @ can be expressed as follows:

1. Let 2° be an arbitrary v-vector such that 20 > 0; k < 1.

2. Define the direction d* = p(z)" — 2*~1, where p(z)" is the solution of the following

LCP:

u=g+Qz""1 + Pp(2)
u>0, p(z)>0, u'p(z)=0

3. Terminate if d* = 0; otherwise zF = 2¥=1 4+ \;,d*), where

H(2F7 4 Apd®) = mAin{gs(zk—l + Adk), 2F71 4 \d* > 0}

4. Terminate if some appropriate stopping rule is satisfied; otherwise k < k& + 1 and
go to step 2.

For a symmetric matrix M, the convergence condition for the GPSOR method is the
matrix P positive definite [32]. When we consider P as in (5.9), we have the par-
allel version of GPSOR method (PGPSOR). In this case, if M is symmetric positive
semidefinite with positive diagonal entries, the method is convergent for 0 < wz < 2
(k=1,...,v i =1,...,p) since

P+ P" =diag(2E;" = I)Ay, ..., (2E; = DA,) + diag(My ..., M,,)

and then P is positive definite.

On a multiprocessor system the matrix—vector product s* = Md"* used to compute A,
can be obtained in parallel. Then on the i—th processor the computational complexity
of one iteration is proportionally twice the number of nonzero entries of the submatrix
M;. Furthermore, before to compute A, each processor must send its computed part
of the vector p(z)k to the other processors and must receive the other parts from the
other processors. The same operation must be repeated for the vector s¥. This global
communication operation is known as multinode broadcast [5]. In this case the operation
must be synchronous (i.e. all processors must expect the completion of the operation
before to proceed). In order to balance the workload among the processors, we set
v; = v/p, for any i (we assume that p is a divisor of ). Thus the time to execute one
PGPSOR iteration on p processors can be expressed as

tPGPSOR = tcomputation + tcommunication =2% (O(WV/p)tfl + tsmb(y/pap))

where ¢ ¢ is the time to perform a floating point operation, nv/p (n << v) is the maximum
number of nonzero entries of the submatrices M; (i = 1,...,p) and tgy, is the time of
a synchronous multinode broadcast among p processors, each sending v/p data to the
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others. We observe that tpgpsor is twice the time to execute one iteration of the PSOR
method.

Another way to improve the PSOR method is to consider a different splitting of the
matrix M, by partitioning the matrix M into p submatrices as in (5.8) where

My = (Mg Mix ... Migy_1)
- My_21 Ma_22 ... Mz_22,_1
M; = ’ ’ =P l=2,... -1
! <M2z1,1 Ma—12 ... Mo_12p-1 b
M _ M2p—2,1 M2p—2,2 MZp—2,2p—1
P Mop_11 Mop—12 ... Mop_12p—1
o 2p—1
and M;; = (m,ﬁikj)), t,j = 1,...,2p — 1, are v; X v; matrices with Z v; = v and
=1
_ AT
M;,i = M; ;.

If we write M;; = L; + A; + LT, i =1,...,2p — 1 and we consider P = (P, ;), i,j =
1,...,2p—1, with

E'A;+L; for i=3j i=1,...,.2p—1

P;=4q M; for i=1,3,...,2p—1, j=2,4,...,2p—2,
0 otherwise
where E;, i = 1,...,2p — 1, is a diagonal matrix of order v; with nonzero entries w},

k=1,...,v;, and Q = M — P, then the splitting M = P + @ generates an iterative
scheme, called Overlapping Parallel SOR (OPSOR) method. As for the PSOR method,
starting from an arbitrary v-vector 2°, such that 20 > 0, the OPSOR method generates
a sequence of vectors z% = (w],v3, w3 ,...,v3, 5 w3, ;)7 by solving the following two
sets of LCPs:

1. compute the solutions v;, i = 2,4,...,2p — 2, of the (p — 1) LCPs

2p—1
U; = (El_lAl + Li)vi + (AZ — El_lAl + LZT)Z,?_I + Z M@jZfil + gi
=
>0, v;i>0, ufv;=0

2. compute the solutions w;, i =1,3,...,2p — 1, of the p LCPs

wi = (E7'Ai+ Liwi + (A — BT A+ LT)E ' 4
+ Z Mi,jVj + Z Mi,j2§k71) + gi
j even j odd
J#i

Here v;, Wy, g; and u; are v;—vectors and g = (g{,...,93, 1), u=(u],...,uz, ;)"
As for PSOR method, if the LCP (5.7) is feasible and if the following conditions hold
(k': 1,...,1/1‘)

)T
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) 2 .
O<w}c< 1 even

(’L %) Z Z |m(ld)

k k jeven I=1
J#i

(5.12)

. 2
O<w,’c< 7 odd

(7, %) Z Z |m(Z’J)

Mk jodd =1
J#i

then, for any 2° the sequence {zk} generated by OPSOR method converges to a solution
of (5.7) as k — oo.
Indeed if conditions (5.12) hold, R = (R; ;) = PT — Q

(2E;1—I)Ai for i=j, i=1,...,2p—1
Rij=<¢ —M,; for i#j, i,j even or i,j odd
0 otherwise

is a symmetric strictly diagonally dominant matrix with positive diagonal entries then is
a symmetric positive definite matrix. Since P = %(M + P — @), P is a positive definite
matrix and then it is nonsingular and P + @ is a P-regular splitting of M.

For a given sparse matrix M without a quasi—band structure, also for the OPSOR method
the upper bound for w¢ generally decreases as p increases. But this upper bound does not
depend on all the entries of the corresponding row of M. Then (as showed experimentally
n [19]) given p, the number of iterations required by OPSOR method for solving the
LCP (5.7) is less than that required by PSOR method.

On a parallel computer with p processors, the (p—1) independent LCPs at the step 1 can
be executed simultaneously on different processors and, analogously, the p independent
LCPs at the step 2. Then, the complexity of one iteration of the OPSOR method on the
l-th processor is proportional to the number of nonzero entries of the I-th submatrix M;
of M.

After steps 1 and 2, by two synchronuos multinode broadcast operations, each active
processor sends the computed part of the vector z* to the other processors and each
processor receives the parts of zF computed by the other processors.

In order to balance the workload among the processors, in practice we choose a value
Vover for v; with ¢ even and we set v; = v = % for ¢ odd.

Thus the time to execute one OPSOR iteration on p processors can be expressed as

topsor = tcomputation + tcommunication =
= O(a(yover + D))tfl +tsmb(yoverap) +tsmb(777p)

where a(Voper + 7) (@ << v) is the maximum number of nonzero entries of the p sub-
matrices of M. It is evident that the time to execute one iteration of OPSOR method is
greater than that of the PSOR method.
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CHAPTER 6

Computational Experiments

In this Chapter we report the results of a set of numerical experiments that show the
computational behaviour of the methods described in the previous chapters. The exper-
iments are carried out by a set of programs written in Fortran 77 on a Digital Alpha
Workstation 500/333 Mhz (Tables 1-5) and on a Digital Personal Workstation 500au
(Tables 6-10), using the double precision (macheps= 2.22 - 1071¢). The results reported
in Tables 11-13 are carried out on a Cray MPP T3E/128-128 at the C.LN.E.C.A. Su-
percomputing Center L

The most part of the considered test problems are randomly generated with assigned
features by following a technique similar to that introduced in [50], but using Givens
rotations instead of Householder elementary trasformations for obtaining a prespecified
level of sparsity [44]. In particular, in these test problems, we prefix the sizes n, me,m;,
a solution z* and the corresponding Lagrange multipliers, the number nac of inequality
constraints that are active in the solution z*, the level of sparsity (denoted by spars(+)),
the spectral condition number (denoted by K (-)), the rank, the euclidean norm and the
A

C

The values considered for several features of the test problems (e.g. size, condition num-
ber, level of sparsity) reflect those of the problems arising in many practical applications.
Furthermore, even if these experiments concern test problems without structure, it is well
known that the splitting and projection—type methods are suited to exploit the structures
of the Hessian matrix or the constraint matrices that often appear in the real problems.
In all the experiments we use the following stopping rule:

distribution of singular values of the matrices G and

2"+t — =¥

ey <

(6.1)

where tol = 107 in Table 1-5, 7-10, tol = 10~'2 in Table 6 and tol = 10~ in Tables

11-13. In the tables we denote by it and time the number of iterations and the time in
* it
seconds to obtain the solution and by er, the relative error %

The results reported in the following tables are related to the following subjects:

IThe Cray T3E is a MIMD system, scalable up to 2048 processing elements (PEs), connected by a
three—dimensional torus network, with a bandwidth of 480 Mbytes/sec. on each direction. Each PE
has a local memory, but can access to the local memory of all other PEs (remote memory), making the
physically distributed memory globally addressable,

The Cray T3E at C.I.N.E.C.A. Supercomputing Center has 128 PEs; each PE has 128 Mbytes of local
memory and a peak performance of 600 Mflops.
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e numerical behaviour of the projection type methods for medium-scale and large—
scale QP problems;

e comparison between the VPM and the active set method for large—scale QP prob-
lems;

e comparison among the scaled gradient projection methods and the variable proj-
ection—type methods;

e numerical behaviour of parallel inner solvers in the projection—type methods.

Table 1. Behaviour of the PM for different values of p

n = 1000 me = 600 m; =0
spars(G) = 98% IGll2 =1
spars(C) = 99% IIC]l2 = 10 K(C) =102
sufficient convergence condition: p < 2
Projection Method

K(G) P it time ery
1.43 405 14.2 2.7e-5
1.67 347 12.3 2.6e-5
102 1.94 297 11.0 2.7e-5
1.98 658 23.3 1.2e-7
1.995 | 2742 94.3 1.2e-7
1.43 2455 84.2 2.7e-4
1.67 2104 72.4 2.7e-4
103 1.94 1806 61.8 2.7e-4
1.98 1771 60.2 2.7e-4
1.995 | 2741 93.7 3.8e-5
1.43 3800 129.1 5.9e-4
1.67 3246 111.0 5.9e-4
10* 1.94 | 2796 98.9 5.9e-4
1.98 2741 93.9 5.9¢-4
1.995 | 2721 93.4 5.9e-4
1.43 7215 246.3 3.2e-3
1.67 6178 211.7 3.2e-3
10° 1.94 | 5319 181.6 3.2e-3
1.98 5210 177.5 3.2e-3
1.995 | 5171 176.2 3.2e-3

6.1 Numerical behaviour of the projection type meth-
ods for medium—scale and large—scale QP prob-
lems

The aim of the first set of experiments is to evaluate the numerical features of the
considered methods, removing the possible dependencies on the inner iterative solver.
Thus, we use test problems of medium-size (n = 1000) with equality constraints only
(me = 600), so that the inner subproblems can be solved by LAPACK routines. In this
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first set of experiments, the eigenvalues of G have a uniform distribution, the sparsity
levels of G and C are 98% and 99% respectively, ||G|l2 = 1, ||C|l2 = 10 and K(C) = 102.
The results of these tests are reported in Tables 1 and 2.

With regard to the SM, a P-regular splitting of GG is obtained by taking

D = Qdiag(gu, g22, .., gnn)7

where Q is a diagonal matrix with entries w;, ¢ = 1,...,n, satisfying the condition w; >

lgisl . . . . . .
max <1, Z;g_g_ d >; consequently, 2D — G is a strictly diagonally dominant matrix with

positive entries and, then, it is positive definite. In the PM, we choose D = I. For the
MPM, we use P = I + G and we report the results obtained with the empirical optimal
value of parameter 6 (§ = 0.8). An “a priori” scaling of G and ¢ is performed using the
technique suggested in [49]. For the VPM, we use D = I and the rule (4.31) for updating
the parameter p; at each iteration.

Table 1 shows the behaviour of the PM with respect to different values of the parameter
p. For each prefixed value of the condition number K (G) of G, we try to individuate the
value of p that satisfies the sufficient convergence condition p < 2 and gives the better
performance. Nevertheless, in some cases, it is possible to find values of p that do not
satisfy the sufficient convergence condition and produce a lower number of iterations; for
example, when K(G) = 10 and p = 3.92, we have it = 1463, time = 51.1, er, = 5.1e—4
and when K (G) = 105 and p = 3.98, we obtain it = 3199, time = 109.8, er, = 2.5¢ — 3.

Table 2. Comparison among the PM, the SM, the MPM and the VPM.

PM SM MPM VPM

K(G) it time ers it time ers it time ery it | time ery
102 297 11.0 2.7e-5 310 12.2 2.5e-5 167 7.9 2.6e-5 58 3.3 1.1e-5
103 1771 60.2 2.7e-4 ||1993 | 73.4 2.5e-4 879 42.4 2.7e-4 || 139 7.0 2.0e-4
10% 2721 93.4 5.9e-4 (12454 | 90.3 6.0e-4 || 1507 | 67.5 4.3e-4 || 155 7.7 5.9e-4
10° 5171 | 176.2 | 3.2e-3 || 7519 | 266.3 | 2.2e-3 || 2563 | 112.6 | 1.3e-3 || 181 8.8 2.4e-4

In Table 2 we can observe how the number of iterations of all the methods changes
when K (G) increases; for the PM we report the better results obtained with p satisfying
the sufficient convergence condition. The MPM and VPM are more efficient than the
classical SM and PM; in particular, the VPM requires in all cases a very small number of
iterations and seems to be weakly dependent on the condition number of G. Furthermore,
the results obtained by the VPM do not require an initial scaling of G and ¢, while the
efficiency of the MPM is strongly affected by the use of this scaling (for example, for
the test problems of Table 2, if we do not use the scaling suggested in [49], it results:
it = 311 for K(G) = 10%, it = 1853 for K(G) = 10%, it = 2864 for K(G) = 10*
and it = 5437 for K(G) = 10°). Finally, the rate of convergence of the methods also
depends on the distribution of the eigenvalues of G. For example, in the case of the
SM, when K(G) = 10* and we have some hundreds of eigenvalues of G close to the
maximum eigenvalue, the number of iterations is 63; on the contrary, if some hundreds
of eigenvalues are close to the minimum eigenvalue, it = 4222.

When we use a direct solver for solving the inner subproblems, all the considered methods
are not affected by the increase of the condition number of the constraint matrix.

On the contrary, the choice of an iterative scheme as inner solver is crucial for the
effectiveness of the methods. Table 3 shows the numerical behaviour of the MPM and
the VPM when we use the projected SOR method as inner solver [9]. In this case,
we choose an empirical optimal value for the SOR relaxation parameter (w = 1.5) and
an inner progressive termination rule depending on the quality of the previous outer
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iterate. We consider equality and inequality constrained test problems (nac is the number
of inequality constraints that are active in the solution z*) with a constant value for
K(G) and different values for K((CT AT)"). We point out that the number of outer
iterations is weakly dependent on K((CT AT)"), while the number of inner iterations
(reported in brackets) increases markedly when K ((CT AT )") increases, and this affects
the performance of the methods.

Table 3. Behaviour of the MPM and the VPM with an iterative inner solver

n = 2000 me = 400 m; = 600 nac = 400
K(G) =10* spars(G) = 99% spars((CT AT)") = 99.6%
MPM (SOR) VPM (SOR)
K((CT AT)T) it time ery it time ers
10 361 (1740) 7.6 3.9e-5 32 (649) 1.6 1.2e-5
100 425 (19898) | 28.7 | 3.9e-5 | 37 (11931) | 13.9 | 4.1e-6
300 491 (97171) | 110.5 | 3.9e-5 | 38 (24508) | 26.6 | 6.3e-6

It is interesting to observe that the behaviour of the projection—type methods depends
on the numerical performance of the inner iterative solver. In Table 4 we consider test
problems with equality constraints only and we report a comparison between two different
inner solvers for the VPM: the projected SOR method [9] and the PCG method with the
Arithmetic Mean preconditioner [15]. In this case K(G) is fixed and we change K(C);
furthermore, in order to avoid the introduction of scaling techniques on the inner solvers,
the constraint matrices are generated so that ||C||2 = 1.

We point out that the number of outer iterations is about the same in all the cases, while
the number of inner iterations increases as K (C) increases. Nevertheless, the efficiency
of the VPM is preserved if we use the PCG as inner solver.

In Table 5 we show the results obtained by the SM, the MPM and the VPM for well
conditioned test problems with size n = 8000. We use as inner solver the PCG method
for the equality constrained problem and the Projected SOR method for the equality and
inequality constrained problem.

We may observe that, also for these cases, the VPM achieves the best performance;
furthermore, since the VPM is weakly dependent on the condition number of G (see
Table 2) it appears promising also for the solution of not so well conditioned large—scale
problems.

Table 4. Behaviour of VPM with different iterative inner solvers
n = 1000 me = 600 m; =0

spars(G) = 98% IGllz=1  K(G)=10°
spars(C) = 99% IC]l2 =1
VPM (SOR) VPM (PCQ)

K(C) it time | er, it time | erg
10 29 (569) 1.6 2.1e-5 || 30 (485) 2.4 4.4e-6
30 31 (2836) 5.4 2.2e-6 || 31 (1082) 4.8 4.5e-7
50 30 (4323) 6.1 2.2e-5 || 29 (1355) 4.4 1.5e-6
100 27 (8480) 11.4 | 1.5e-5 || 29 (1881) 5.9 1.8e-6
300 35 (21973) | 28.0 | 9.2e-6 || 29 (2385) 7.1 3.5e-6
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Table 5. Well conditioned large—scale QP problems

n = 8000
spars(G) = 99.8% [|G||2 =40 K(G) =30
A A A
= 99. =1 K =1
spars<c> 99.9% H(C> . c 0
SM MPM VPM
it time ery it time ery it time ery

anie z 3000 222 (2137) | 128.7 |3.5e-6 || 151 (1010) | 116.2 | 2.4e-6 || 46 (285) | 43.6 [1.9e-6
me = 2000

m; = 3000 || 235 (1532) | 169.9 |3.5e-6 || 144 (814) 136.3 | 3.7e-6 || 48 (481) 71.9 |2.1e-6
nac = 2000

It is important to remark that the test problems considered in Tables 1-5 are randomly
generated. When the underlying application suggests a convenient P-regular splitting
for the Hessian matrix G, the efficiency of the SM may increase (see Chapter 7).

6.2 Comparison among the VPM and the active set
method for large—scale QP problems

In Table 6 we consider a set of large and very sparse QP test problems randomly gen-
erated with high condition numbers for the Hessian matrix and the constraint matrix.
The solution of this kind of problem by splitting and projection methods requires an
excessive number of iterations, while the VPM gives an approximation of the solution
in a reasonable time. Furthermore, the results of Table 6 allow us to compare the nu-
merical effectiveness of the VPM with the active—set method implemented in the routine
E04NKF of the NAG library [34]. This routine is designed for sparse QP problems and
it based on parts of the SNOPT and MINOS packages.

Table 6. Large—scale QP problems

n = 5000
|G|l =1 K(G) =10 spars(G) = 99.90%
[(CT AT)T|=1 K(CT AT)")=10® spars((CT AT)T) = 99.95%

VPM EO04NKF

Me m; nac it time ery time ery

500 0 0 208 (1861) 3.4 6.6(-11) 46.1 5.3(-15)
4900 0 0 206 (208) 10.8 | 2.2(-11) 11.0 1.0(-14)
4700 | 1800 | 100 166 (957) 29.3 | 5.0(-11) 16.0 4.8(-15)
4000 | 2500 | 800 | 167 (1308) | 34.9 | 2.3(-11) 44 .4 4.0(-15)
3000 | 3500 | 1800 | 136 (1182) | 32.4 | 1.9(-11) 134.0 1.1(-14)
3950 | 550 50 150 (871) 8.4 4.8(-11) 18.4 7.7(-15)
3000 | 1500 | 1000 | 158 (1344) 9.5 2.1(-11) 151.8 6.4(-15)
2500 | 2000 | 1500 | 176 (1722) | 10.7 | 3.1(-11) 246.5 6.1(-15)

In order to improve the coherence in the accuracy of the two approaches, the stopping
rule (6.1) for the VPM works with tol = 10~'%; in this way, starting from the same
infeasible point, we have |f(z*) — f(z*)|/|f(z*)| < 1071° for both methods. In all the
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following tests, the inner solver used by the VPM is the PCG method for equality con-
strained problems and the projected SOR method for equality and inequality constrained
problems. The results of Table 6 show that, for the QP problems with only equality con-
straints, the behaviour of the two methods is reversed: when m. < n the VPM appears
very convenient, while this is the worst case for the NAG routine. In the case of QP
problems with equality and inequality constraints, the routine E0O4NKF, since it is based
on an active—set strategy, benefits by a small value of nac. On the other hand, for a given
number of constraints (m. + m;), the behaviour of the VPM appears weakly dependent
on nac.

6.3 Comparison among the scaled gradient projection
methods and the variable projection—type meth-
ods

Tables 7 and 8 show the numerical behaviour of the VPM and the AVPM with respect
to the class of the gradient projection methods. In particular, in this comparison, we
consider the following schemes:

— the projection method with a limited minimization rule [4, p. 205]. This scheme
is equal to the VPM with D = I and py = p for any k; it is denoted by FPM in
Table 7.

— the projection method with an Armijo rule along a projection arc [4, p. 206]; for
the choice of the projection parameter we can use the following strategy: given a
positive integer v and a constant value p > 0, at the k-th iteration with k£ such
that mod(k — 1,v) = 0, we start the search procedure with the value p and, for
the next (y — 1) iterations we use as projection parameter the value obtained by
the search procedure in the previous iteration. In practice, the scheme is equal to
the AVPM with D = I and 5, = p when mod(k — 1,7) =0 and p; ;1 = pk+i for
t=20,...,v—2. When v =1, p,, = p for any £ > 1. The above scheme is denoted
by AFPM-~ in Tables 7 and 9.

For all methods, the inner QP subproblems are solved by the projected SOR method of

Cryer.

With tol = 10~° in the stopping rule (6.1), we obtain that |f(z%) — f(z*)|/|f(z*)] <

10711 for all methods.

In Tables 7 and 8 we report the results of the FPM, the AFPM-1, the AFPM-10, the

VPM and the AVPM for the same test problems; these last two methods are combined

with the rules (4.31) and (4.32) for pi. In the VPM and in the AVPM we put D = I.
Furthermore, we denote by n. the number of correction steps performed after the line

search in the FPM and the VPM. In the AFPM-v and in the AVPM, n, is the number

Z;:Zl my, of the additional projection steps performed in the search procedure of the

projection parameter. In these last methods, 5 = 0.5 and n = 0.9.

From Tables 7 and 8, we can make the following remarks:

— in the gradient projection methods (Table 7), as p increases, the number it of outer
iterations goes down to a minimum value and then begins to increase again. The
variation of it is more consistent in the AFPM-v. Nevertheless, while the line search
procedure and the corrective step of the FPM are nonexpensive, the additional pro-
jection steps in the AFPM-v affect the computational complexity considerably. In
particular, in AFPM-1 the adaptive search procedure is always performed for large
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Table 7

n = 5000
spars(G) = 99.8% |G =1 K(G) =100
spars((AT CT)T) =99.9% ||(AT cTYT||=1 K((AT cT)T)=10
FPM AFPM-10 AFPM-1

p it | Ne | time it | Ne | time it | Ne | time
| me = 1000 m; = 1000 nac = 500 rank(G) = 4900 |
1.4 557 (1747) 1 35.9 557 (1747) 0 34.7 557 (1747) 0 35.3
2 403 (1277) 290 26.0 401 (1290) 1 25.5 398 (1274) 2 25.7
3.3 398 (1272) 398 26.0 333 (1205) | 36 | 23.7 329 (1789) 225 35.1
7 399 (1312) 399 25.4 241 (1022) | 60 19.2 249 (2157) 405 39.9
20 393 (1448) 393 25.3 163 (944) 75 15.9 220 (3006) 683 54.7
100 344 (2692) 340 24.7 92 (882) 65 11.4 239 (5978) | 1340 95.4
( )
(

200 622 (5123) 620 44.6 122 (1214) | 96 | 15.1 330 (9692 2177 | 152.0
1000 || 1866 (20475) | 1864 | 138.5 || 146 (2071) | 142 | 20.5 || 265 (13231) | 2281 | 158.2

| me = 2000 m; = 2000 nac = 1000 rank(G) = 4900 |

1.4 || 517 (1617) 1 474 || 517 (1616) | 0 | 47.5 || 517 (1616) | O 47.8
2 374 (1185) | 72 | 36.3 || 373 (1204) | 1 | 36.4 || 370 (1189) | 2 36.7
3.3 || 347 (1116) | 347 | 34.4 || 321 (1602) | 40 | 38.2 || 339 (2525) | 258 | 59.2
7 333 (1154) | 324 | 33.4 || 242 (1651) | 64 | 35.1 || 238 (3380) | 406 | 66.5
20 || 305 (1797) | 258 | 35.8 || 140 (1617) | 61 | 28.5 | 203 (2838) | 633 | 73.9
100 || 909 (5487) | 885 | 96.4 || 108 (1575) | 72 | 26.9 || 247 (6140) | 1385 | 144.4

200 [[1951 (11850) [ 1928 | 201.8 || 250 (3754) | 193 [ 57.2 | 308 (9138) [ 2033 | 206.2
| me = 3500 m; = 1000 nac = 500 rank(G) = 4900 |
1.4 [ 481 (1513) 3 54.6 [] 482 (1523) | 1 [ 53.7 [[ 481 (1520) 1 55.6

2 356 (1126) 340 42.1 346 (1120) 1 41.0 343 (1104) 2 42.8
3.3 356 (1134) 356 42.3 289 (1050) | 32 | 38.5 287 (1568) 198 56.0
7 197 (700) 184 27.1 206 (940) 59 | 34.2 239 (2139) 401 69.8

20 206 (1080) 171 31.6 145 (1129) | 66 | 32.4 192 (2785) 594 84.8
100 467 (2927) 456 65.7 103 (1136) | 71 | 30.2 228 (6403) | 1281 | 168.3
200 1606 (9008) | 1606 | 196.9 || 123 (1477) | 97 36.2 292 (9837) | 1928 | 248.1

values of p and it requires a considerable number of projection steps. Consequently,
the AFPM-10 is generally more efficient than the FPM (because of the lower value
of it) and it is more efficient than the AFPM-1 (because of the lower value of
n.). The highest performance of AFPM-10 is obtained for the minimum value of
(it + ne).

— The VPM and the AVPM combined with the updating rule (4.31) have a similar
numerical behaviour (Table 8). They are more efficient than the gradient projec-
tion methods: the number of outer iterations is lower and the corrective steps of
the VPM or the additional projection steps of the AVPM arise in few iterations.
Furthermore, the VPM does not require any prefixed scalar parameter.

— The updating rule (4.32) derived from heuristic considerations about the AVPM
is nonconvenient when it is combined with the VPM. In the case of the AVPM as
well, rule (4.32) appears less efficient than rule (4.31). Indeed, when we use rule
(4.32), the total number of the iterations of the inner solver increases.

The above considerations about the numerical behaviour of the AFPM-10 2, the VPM
and the AVPM combined with rule (4.31) are confirmed in Table 9, where we consider
some test problems with a large number of null eigenvalues in the Hessian matrix G.
Here, Z denotes the n x (n — (m, + nac)) matrix having as columns an orthonormal
basis of the null space of the matrix of the equality constraints and of the inequality

2In Table 9, for the AFPM-10, we report the results obtained with an empirical optimal value of p.
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Table 8
n = 5000
spars(G) = 99.8% Gl =1 K(G) =100
spars((AT ¢T)T) =99.9% ||(AT cTYT||=1 K((AT cT)T) =10
AVPM - rule (4.31) AVPM - rule (4.32) VPM - rule (4.31) VPM - rule (4.32)

it | Ne | time it | Ne | time it | Ne | time it | Ne |time
| me = 1000 m; = 1000 nac = 500 rank(G) = 4900 |
[71(391) [ 18 ] 6.9 [[ 103 (756)] 113 | 14.3 [[ 82 (403) [ 21 [ 6.6 [[ 390 (1261) [ 195 | 24.8 |
| me = 2000 m; = 2000 nac = 1000 rank(G) = 4900 |
[90 (1184) [ 17 [ 19.9 [[85 (1555) [ 87 [ 26.0 [[ 71 (850) [ 14 [ 16.5 ] 156 (938) [ 71 [ 21.3 |
|
|

me = 3500 m; = 1000 nac = 500 rank(G) = 4900 |
80 (528) [ 12 [ 18.9 [[ 70 (665) | 59 [ 22.5 || 86 (560) | 13 [ 19.3 [[ 342 (1144) | 169 | 40.8 |

Table 9
n = 5000
spars(G) = 99.8% |G|l =1 K(G) =100
spars((AT CT)T) =99.9% [|[(AT CT)T||=1 K((AT CT)T) =10
VPM AVPM AFPM-10
ra,nk(ZTGZ) it | e | time it | e | time it | e | time
me = 2000 m; = 2000 nac = 1000 rank(G) = 4500
2000 80 (404) | 11 | 13.8 || 97 (601) | 22 | 16.5 || 102 (1145) | 71 | 217
1750 83 (521) | 12 | 14.2 || 74 (523) | 18 | 147 || 94 (856) | 62 | 20.3
1500 89 (399) | 16 | 14.4 || 79 (421) | 13 | 14.7 || 109 (937) | 69 | 23.7
me = 2000 m; = 2000 nac = 1000 rank(G) = 4000
2000 86 (366) | 18 | 11.8 || SL (442) | 30 | 13.6 || 92 (727) | 65 | 184
1500 84 (831) 9 16.7 74 (857) | 13 | 17.2 240(3118) 164 | 51.8
1000 98 (1023) 8 19.7 90 (995) | 15 | 20.2 137 (2170) 93 36.5
me = 2000 m; = 2000 nac = 1000 rank(G) = 3500
2000 79 (327) | 15 | 150 || 82 (400) | 25 | 18.5 || 99 (727) | 64 | 25.0
1250 87 (358) | 20 | 13.7 || 67 (376) | 25 | 14.2 || 92 (727) | 65 | 216
500 76 (544) 9 13.8 81 (665) | 15 | 15.7 91 (793) 60 19.5

constraints active in the solution. Then, Z7GZ is the reduced Hessian matrix; when this
matrix has a full column rank, problem (1.1) has a unique solution, otherwise, K* is not
a singleton. We may observe that, on these test problems, the effectiveness of the three
methods appears independent on the rank of G.

Table 10 shows the results obtained by the VPM and the AVPM with rule (4.31) on
some large—scale and very large—scale test problems of the CUTE library [6]. These
results confirm that when, in the VPM and the AVPM, a convenient updating rule
for the choice of the projection parameter is used, the corrective step along a descent
direction or a projection arc arises in few iterations and the two schemes show an efficient
numerical behaviour.

6.4 Numerical behaviour of parallel inner solvers in
the projection—type methods

The numerical results reported in the following tables enables us to evaluate on a multi-
processor system the effectiveness of the class of the projection—type methods combined
as a parallel iterative solver for the the solution of the subproblems (5.2).

In particular, we consider QP problems arising in constrained bivariate interpolation,
(see Chapter 7) and we use a parallel implementation in Fortran 90 of the accelerated
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Table 10 - Test problem CVXQP from CUTE

AVPM - rule (4.31) VPM - rule (4.31)
n it | Ne | time it | Ne | time
| me =n/4 |
3000 || 310 (817) | 1 5.6 | 308 (775) | 3 5.0
5000 || 257 (460) | 2 5.9 249 (425) | 1 5.2
7000 || 247 (392) | 1 7.8 || 264 (433) | 1 8.4
9000 | 315(882) | 3 | 20.3 || 304 (784) | 2 | 18.8
| me =n/2 |
3000 114 (204) | 2 17.5 116 (218) | 6 19.4
7000 101 (200) | 3 54.2 103 (190) | 3 50.3
9000 || 133 (420) | 2 | 148.6 || 135 (350) | 1 | 127.1
11000 || 135 (245) | 0 | 107.2 || 135 (245) | 0 | 107.0
13000 || 148 (232) | 3 | 117.8 || 142 (229) | 2 | 112.3
17000 || 129 (206) | 6 | 159.6 || 128 (218) | 3 | 172.2

splitting method (ASM) described in Chapter 3 (see (3.17)), with D = diag(Gy;), Gy
being the diagonal blocks of the matrix G.

Interprocessor communications have been performed by the Cray Shared Memory Access
Library routines [8].

When we implement the ASM on a distributed memory system, the data of the problem
must be distributed among the available processing elements (PEs) P, 1 =1,...,p. A
natural way to distribute the matrix G and the n—vector ¢ is to allocate the nonzero
entries of the j—th row of G and the j—th element of ¢ in the local memory of P, for
j=(l-1Ds+1,...,l-s, I=1,...,p, where s = n/p (we assume p divisor of n).

If we use PSOR or PGPSOR as inner solver, we allocate in the local memory of P;, | =

1,...,p, the nonzero entries of the j—th row of the matrix < i > and the j—th element

of the v—vector < (If > for j = (—-1v/p+1,...,lv/p, where v = m. + m; (we also

assume p divisor of v).

The matrix M of (5.7) is partitioned as indicated in (5.8) with v, = v/p, I = 1,...,p;
the nonzero entries of M; and g; are allocated in the local memory of P;.

If we use OPSOR as inner solver, we distribute among the PEs the nonzero entries of

Q

the submatrices M, of the corresponding rows of < i > and vectors g and < Z > S

in PSOR and PGPSOR, but in this case v9;_2 = Voyer, | = 2,3,...,p, and vo_1 =
(v —(p— 1)Voyer)/p, L =1,2,...,p. The parameter v,,e, is chosen experimentally, so as
to obtain the mimimum number of OPSOR iterations. In [19], numerical experiments
show that a good value for veyer is about Veyer = v/(2p — 1).

Furthermore, local copies of y* and of the current vector iterate of the parallel inner
solver are allocated in the memory of all PEs. As for the parallel inner solver, at each
ASM iteration, the j—th element of the current outer vector iterate is computed by P,
forj=(0—-1)s+1,...,01-s, I =1,...,p; the remaining elements are updated by a
synchronous multinode broadcast operation among the p PEs.

This static allocation of data among the p available PEs gives a well balanced workload.
In fact in all the experiments concerning the three versions of ASM (ASM-PSOR, ASM-
PGPSOR, ASM-OPSOR) we observe that idle time is negligible with respect to the total
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Table 11
ASM-PSOR ASM-PGPSOR ASM-OPSOR
PEs it (ki) [ time it (ki) [ time it (k) | time
n = 4000, sparsity of G = 99.65% sparsity of (CT  AT) =99.75%
m; = 1750, m. = 750, sparsity of M = 95.09%
ASM-SOR 53(131) 31.47
2 106(404) 28.72 62(134) 24.62 81(256) 28.59
4 113(611) 17.94 76(206) 16.28 101(308) 13.36
8 101(735) 9.38 71(264) 8.92 86(379) 6.89
16 100(776) 6.15 100(313) 6.70 97(411) 4.68
32 103(795) 3.99 75(320) 4.46 85(489) 3.47
64 107(816) 3.15 74(327) 3.63 99(469) 2.78
m; = 2500, m,. = 1000, sparsity of M = 95.10%
ASM-SOR | 62 (131) 59.94
2 144 (900) 92.95 72 (237) 60.00 112(558) 82.79
4 144 (1400) | 58.14 128 (445) 47.73 120(678) 32.82
8 133 (1656) 28.41 99 (490) 22.49 130(849) 17.17
16 132 (1704) 16.94 129 (563) 15.80 132(873) 10.48
32 130 (1803) 9.63 129 (589) 10.10 134(915) 7.06
64 136 (1841) 6.92 151 (642) 8.61 122(901) 5.23
m; = 4000, m. = 2000, sparsity of M = 95.11%
ASM-SOR 123(527) 143.34
2 407(2950) | 333.06 | 208(500) | 151.60 | 200(1078) | 198.17
4 234(4459) | 200.74 | 358(1284) | 144.68 | 407(2160) | 96.25
8 252(5160) | 94.82 | 211(1489) | 68.56 | 235(3162) | 55.86
16 236(5641) 57.19 259(2317) 61.03 203(3657) 34.83
32 224(5820) | 28.73 | 213(2323) | 34.35 | 237(3525) | 22.42
64 232(5949) | 18.37 | 232(2702) | 30.84 | 211(3762) | 14.08

elapsed time. For example, if we exclude the first step of the inner OPSOR iteration where
one PE does not work, the maximum idle time for the three version of ASM is about
0.8% of the total elapsed time for p = 8, 1.3% for p = 16, 2.4% for p = 32.

The results reported in Table 10 shows the behaviour of ASM combined with PSOR,
PGPSOR and OPSOR as inner solvers for a different number of PEs. The sparsity of
the matrices G, C' and A is very large. Consequently the matrix M is sparse (sparsity
greater than 95%).

In Table 11 k;; denotes the total number of iterations of the inner solver. The serial
version of ASM (executing on one PE) uses the projected SOR method as inner solver
with a value of w that provides the best result. This last inner solver has in general a
better performance than the serial version of GPSOR: when the value of w is a good
estimate of its optimal value, GPSOR performs extra—iterations with respect to the SOR
method. For example, for the problem in Table 11 with n = 4000, v = 3500 and w = 1.2,
ki = 131 for SOR and k;; = 136 for GPSOR. For an arbitrary value of w, for instance
w = 0.9, the number of GPSOR iterations is less than that of SOR method (k;; = 190
for SOR, k;+ = 157 for GPSOR), but the complexity of GPSOR reduces its performance
(time = 69.89 for SOR, time = 88.80 for GPSOR).

In the PSOR and OPSOR inner solvers the diagonal entries of the matrices F; are com-
puted as the upper bounds of the inequalities (5.10) and (5.12) respectively (reduced by
a small constant). For the PGPSOR inner solver, we use F; = wl where w approximates
the value that provides the lowest total number of inner iterations.

Table 11 shows that, as p increases, the number of iterations of the three solvers increases,
because the iterative schemes change with the number of blocks in which M is partitioned.
Thus, we are not considering the same algorithm when p increases and, consequently,
it is not very significant to discuss about the scalability or the speedup of the three
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Table 12
ASM-PSOR ASM-PGPSOR ASM-OPSOR
PEs it (k) [ time it (ki) [ time it (ki) [ time
n = 4000, m; = 2500, m. = 1000, sparsity of G = 99.65%
sparsity of (CT  AT) = 99.50% sparsity of M = 81.78%
ASM-SOR 66(205) 154.36
2 147(1680) | 444.32 1(2310) 160.27 | 139(1083) | 371.96
4 145(2515) 294.89 112(426) 127.94 127(1323) 133.30
8 130(2077) | 138.85 123(548) 65.44 | 146(1516) | 65.23
16 133(3183) 74.08 102(591) 38.55 158(1590) 36.81
32 144(3355) 37.25 120(761) 23.22 | 157(1593) | 20.87
64 130(3359) 21.27 95(814) 15.91 | 157(1645) | 12.90
sparsity of (CT AT") = 99.38% sparsity of M = 73.02%
ASM-SOR 66(224) 222.98
2 122(2204) | 768.79 81(237) 221.31 | 125(1384) | 631.84
4 111(3265) | 535.04 90(409) 168.11 | 140(1579) | 220.24
8 115(3865) | 254.66 90(495) 81.83 | 131(1913) | 112.40
16 116(4156) 147.57 103(670) 58.34 119(2002) 61.89
32 110(4282) 64.29 103(790) 30.82 | 117(2116) | 35.40
64 105(4359) 35.91 111(906) 21.59 118(2169) 20.78
sparsity of (CT  AT") = 99.25% sparsity of M = 63.54%
ASM-SOR 64(185) 241.26
2 148(2663) | 1172.93 81(250) 20351 | 132(1632) | 942.07
4 134(3945) 837.71 96(456) 236.61 130(2042) 363.15
8 126(4640) | 404.81 92(656) 134.74 | 140(2308) | 174.93
16 127(5077) 236.82 97(712) 79.01 139(2515) 98.92
32 126(5218) 99.71 91(740) 36.04 133(2552) 53.26
64 124(5251) 54.08 104(889) 25.49 124(2686) 31.19

schemes. We can only observe that, as expected, for a fixed p, the time to execute one
iteration of OPSOR method is not much greater than that of the PSOR iteration, while
one PGPSOR iteration is more than twice the PSOR iteration.

From Table 11 we point out that it is convenient to use a parallel inner solver when p is
sufficiently large, generally p > 2. Nevertheless, only for large—scale problems it appears
useful to have a great number of PEs (in the case v = 2500, see the elapsed times for 32
and 64 PEs).

If we compare the three methods we observe that:

e for p > 2, the ASM-OPSOR has better performance with respect to the others;

e as p increases, the ASM—PSOR becomes more convenient than the ASM-PGPSOR;
this is justified by the high iteration cost of PGPSOR method with respect to PSOR
method.

In the next experiment, we are interested in comparing the effectiveness of the three
methods for different level of sparsity of the matrix M.

Table 12 shows the increasing performance of ASM-PGPSOR with respect the ASM—
OPSOR as the sparsity of M decreases. This arises because, for a fixed p, the number
of ASM-PGPSOR iterations does not strongly depend on the sparsity of M. On the
other hand, when the number of nonzero entries of M increases, the upper bounds of the
relaxation factors in the OPSOR method become so small to produce a slow convergence.
We point out that the comparison between the two inner solvers depends also on the
number of available PEs. In practice, the behaviour of ASM-OPSOR respect to ASM—
PGPSOR is analogous to that of ASM-PSOR in the Table 11.

Table 13 allows to point out that the previous considerations depend on the choice of
the diagonal matrices E; in the PSOR and OPSOR inner solvers, especially when the
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Table 13
ASM-PSOR ASM-PGPSOR ASM-OPSOR
PEs w | it (ki) [ time w | it (ki) | time w | it (kir) [ time
n = 4000, m; = 2500, me = 1000, sparsity of G = 99.65%
sparsity of (CT  AT) = 99.75% sparsity of M = 95.10%

w =~ 0.09 w =~ 0.19
0.25 132 (1704) | 16.99 | 0.9 | 128 (692) | 17.93 0.54 149 (580) 9.16
0.39 | 144 (985) | 12.28 | 1.1 | 118 (660) | 17.20 | 0.89 | 166 (361) | 8.03
16 0.45 146 (799) 11.03 | 1.3 | 141 (656) | 17.50 0.90 215 (563) 9.44
0.47 146 (754) 10.76 | 1.5 | 129 (563) | 15.80 0.91 278 (2472) | 20.60

0.48 * * 1.7 | 127 (599) | 16.34 0.93 * *
w ~ 0.08 w = 0.17

0.22 129 (1616) 9.01 0.9 | 124 (680) | 10.92 0.52 134 (600) 6.17
0.33 143 (1089) 7.43 1.3 | 124 (644) | 10.56 0.70 148 (410) 5.59

32 0.40 142 (936) 6.96 1.5 | 129 (589) | 10.10 0.80 164 (321) 5.35
0.45 | 145 (814) | 6.60 | 1.7 | 115 (585) | 9.91 | 0.85 | 169 (294) | 5.29
0.46 * * 1.9 | 150 (623) | 10.53 0.87 155 (5263) | 22.09
sparsity of (CT  AT) = 99.38% sparsity of M = 73.02%
w ~ 0.07 w~0.13

0.20 128 (2099) | 33.16 | 1.3 | 87 (815) 30.79 0.20 125 (2051) | 33.94
0.30 131 (1400) | 23.80 | 1.4 | 100 (788 30.20 0.30 126 (1265) | 22.76

)
32 0.40 154 (1016) | 18.79 | 1.5 | 103 (790) | 30.82 0.50 152 (704) 15.21
0.43 157 (930) 17.63 | 1.6 | 100 (780) | 29.97 0.80 153 (362) 10.46
0.44 * * 1.7 | 118 (783) | 30.40 0.85 * *
w ~ 0.06 w~0.12
0.20 130 (2152) | 19.16 | 0.7 | 92 (939) 21.55 0.30 126 (1313) | 13.94

(
0.30 | 130 (1374) | 13.80 | 1.3 | 104 (872) | 20.46 | 0.40 141 (927) | 11.13
64 0.40 | 155 (1003) | 11.17 | 1.5 | 111 (906) | 21.59 | 0.60 147 (558) | 8.46
043 | 164 (1594) | 1533 | 1.7 | 126 (935) | 21.97 | 0.80 146 (360) | 6.92
0.44 * * 1.9 | 105 (881) | 20.74 | 0.85 *

The character * indicates that the inner solver does not converge.

sparsity of M decreases. The inequalities (5.10) and (5.12) provide sufficient conditions
for the PSOR and OPSOR convergence respectively. But for this methods we can obtain
a faster convergence also for diagonal matrices F; = wl with values of w greater than the
minimum of the upper bounds (5.10) and (5.12) (@ in Table 13). This observation is in
agreement with the considerations related to Table 1 about the projection parameter. On
the contrary the total number of inner iterations of ASM-PGPSOR is weakly dependent
on the value of w.

In conclusion, for large and very sparse quadratic programs, the ASM—-OPSOR appears
the more efficient approach; for intermediate level of sparsity of M, when w satisfies the
PSOR and OPSOR convergence conditions, ASM-PGPSOR achieves a better perfor-
mance.
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CHAPTER 7

Two applications

In this chapter, we describe two applications, arising in the framework of data analysis,
that can be efficiently solved by projection—type methods.

7.1 A Constrained Bivariate Interpolation Problem

Given N pairwise distinct and arbitrarily spaced points P; = (x;,9;),i=1,...,N,in a
domain D of the x — y plane and N real numbers f;, ¢ =1,..., N one has to determine
a function f(z,y) of class C! in D whose values in P; are exactly f;, i = 1,..., N, and
whose first or second order partial derivatives satisfy appropriate equality or inequality
constraints on a given set of points in D.

This problem can easily have thousands of interpolation points P;.

A global approach for solving this problem consists of the following three steps.

1. Triangulation. The points P;, are used as the vertices of a triangulation of the
domain D (see [23], [1]).

2. Curve Network. The function f(z,y) and its first order partial derivatives are
defined on the subset consisting of the union of all edges of the triangulation. The
curve network is obtained by interpolants which are constructed using the data f;
and the first order partial derivatives f,(P;), f,(F;) in the points P;.

3. Blending. The function f(z,y) is extended to D by means of a blending method
which will assume arbitrary position and slope on the boundary of a triangle (see

[2], (3], [22] ).

In step 2., we can express the values of f(x,y) and its first order partial derivatives in
a point @ in the triangle of vertices P;, P; and P as linear combination of f;, f;, fx,
fo(By), fy(Bi), fx(Pj), fy(P;), fz(Px) and fy(Px). In order to obtain the 2N-vector
z = (fo(P1), fy(P1), fo(Po), fy(P2), ..., fu(Pr), fy(Pn))T, we consider the problem of
computing a piecewise cubic interpolating curve which minimizes the functional

8% f >2
S [ (ZLY as,

.2 v
ijEN, Y€ <86U

where ds;; is the element of the arc length along the edge e;; in the triangulation with
endpoints P; and P;, and N, is a list of indices representing the edges of the triangulation.
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In [35] Nielson proved that the vector z minimizes the quadratic function

1
QxTGm—i—qu,
where G = (Gij), ¢ = (¢;), 4,7 =1,...,N and

G (5 8)0 e (57 B9) it wens
7 [ ] v}

(7.1)

otherwise G;; =0,

— . PR . P . 2
Q= (§ﬁef”% y Big = %ﬁ%y), VYij = %, a; =2 agj, Bi =2 Bij, v =
2% 7ij; and

T
(fi—fi)(zj—=z) (fi— 1)y —yi)
(Z e, 3 Uil )
Here, N; = {ij : e;; is the edge of the triangulation with endpoint P;}, ||e;;]| is the length
of e;; and >~ is the summation over indices ij € Nj.

THEOREM 4 The symmetric matriz G of the problem (7.1) is positive definite.

PROOF. See [16].
The constraints on the surface f(z,y) can be expressed as a set of linear equalities and
inequalities of the form

(7.2) Ce= d

Az > b

In conclusion, to determine the curve network we must solve the strictly convex quadratic
programming (7.1)-(7.2) where G is positive definite and, in general, quite sparse.

If we set D = diag(G11,...,Gnn) and H = G — D, we can prove that D + H is a
P-regular splitting of G and we can obtain the solution of (7.1)-(7.2) by using the SM.

THEOREM 5 The symmetric matriz D — H is positive definite.

PROOF. If w = (w{,w3,...,w})" with w; = (UL, )T is any vector different from
zero, we must prove that w? (D — H)w > 0, i.e.

wT(D—H)w = Zw;T(Guwz - Z Gijw;)
i=1 ijEN;
N 1 . .
= > > W[((%’ —z) W+ (y; — ) Y,)?
i=1ijeN; Y
5 = )W+ (g — W) (= ) W (3 — )W)

Now, for each cubic Hermite polynomlal i; defined on e” such that in the points P; and
Pj g = =0and ¢j = (z;—z:) ¥, +(y; —y:) ¥ and @) = —(z;—2:) ¥ — (y; —1:) ¥},
that is, @;;(t) = t(1 — t)%¢} + t2(t —1)¢f, (0 <t < 1), we have

1 1 1
Z —/0 (pi(t)2dt = Z (013 (1) (1) — ¢75(0)¢5;(0))

2 TP B Tew P

- >y

i=1ijEN; ||€”||
= 4w?(D - H)w

3@1] 301_] (0)
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We have used the relations ¢};(1) = ¢};(0) and ¢;’(1) = —¢7;(0) . Since there always
exists some e;; on which ¢(t) # 0, we have proved that w” (D — H)w > 0.

An extensive experimentation on test problems arising from this application shows the ef-
fectiveness of the SM combined by the projected SOR method as inner solver for medium
and large—scale problems [17]. In Table 14, the results obtained by solving test problems
of this kind by the SM with D = diag(G};) are compared with those obtained by the
MPM and the VPM with D = diag(G;) (as in the SM) and D = I. We observe that in
this application the effectiveness of the SM is essentially the same of that of the VPM
with D = diag(G;).

Table 14. Special quadratic programs arising in constrained bivariate
interpolation problems (tol = 107°).

SM (SOR) VPM (SOR) MPM (SOR)
D = diag{G;} D = diag{G;} D=1
Me I m; it I time it I time it | time it l time

n = 1000 spars(G)=98.6% K(G)=105.3 |G| =839.3 spars((CT AT)T)=99.1%
50 50 53 (110) | 0.09 | 42 (94) 0.09 | 156 (685) 0.3 | 277 (1650) | 0.4
200 | 300 | 40 (133) 0.8 | 42 (180) 1.0 147 (961) 3.8 | 193 (1928) | 7.1
400 | 600 | 34 (232) 5.3 | 44 (352) 7.9 | 85(1036) | 15.3 | 145 (3022) | 44.2

n =3000 spars(G)=99.6% K(G)=146.5 |G| =2874.6 spars((CT AT)T)=99.7%
200 | 100 | 216 (435) | 1.3 [ 116 (190) | 1.0 | 207 (1226) | 1.7 | 301 (2520) | 2.0
500 | 500 | 234 (434) | 5.5 | 116 (228) | 3.3 | 197 (1232) | 6.9 | 265 (2520) | 11.3
1000 | 1000 | 106 (312) | 12.6 | 95 (261) | 10.8 | 156 (1231) | 28.5 | 238 (3400) | 72.2

These results are carried out on a Digital Alpha 500/333 Mhz.

7.2 Training Support Vector Machines

We consider the numerical solution of the QP problem arising in training learning ma-
chines, named Support Vector Machines (SVMs) [7], [51].

The learning technique SVM performs pattern recognition between two point classes by
finding a decision surface determined by certain points of the training set.

We briefly sketch the SVM technique starting from the simple case of two linearly sepa-
rable classes (see [40], [42]).

We assume that we have a data set (training set) of labeled examples

D:{(playl)v 7’:177”7 pZERmv yle{_lvl}}

and we wish to determine the hyperplane that separates the data and leaves the maximum
margin between the two classes, where the margin is defined as the sum of the distances
of the hyperplane from the closest points of the two classes. When the two classes are
nonseparable we can determine the hyperplane that maximizes the margin and minimizes
a quantity proportional to the number of misclassification errors. The trade-off between
the largest margin and the lowest number of errors is controlled by a positive constant C
that has to be chosen beforehand. The solution to this problem is a linear classifier [42]

F(p) = sign (Z ziyip" pi + b)

i=1
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whose coefficients x; are the solution of the following quadratic programming problem

n
minimize %mTG’x— E T;
(7.3) i=1

n
subject to Zyimi:O, 0<z; <C, j=1,...,n,
i=1

where * = (z1,22,...,7,)T and the entries Gij of G are defined by G;; = yiyjp;fppj.
Thus, the classifier is determined by the data points associated to the nonzero coefficients.
These data points, termed support vectors (SV), condense the information of the training
set sufficient to classify new data points.

The previous technique can be extended to the general case of nonlinear separating
surfaces. This is easily done by mapping the input points into a space Z, called feature
space, and by formulating the linear classification problem in the feature space. Typically
7 is a Hilbert space of finite or infinite dimension. If p € R™ is an input point, let ¢(p)
be the corresponding feature point with ¢ a mapping from R™ to Z. The solution to
the classification problem in the feature space will have the following form

F(p) = sign (Z ziyip(p) o(pi) + b)

and therefore will be nonlinear in the original input variables. In this case, the coefficients
z; are the solution of a QP problem of the form (7.3) where G;; = v;yjo(pi)T(p;). At
first sight it might seem that the nonlinear separating surface cannot be determined
unless the mapping ¢ is completely known. However, since ¢ enters only in scalar
product between feature points, if we find an expression for the scalar product in feature
space which uses the points in input space only, that is

(7.4) o(pi)"e(p;) = K(pi, p;),

full knowledge of ¢ is not necessary. The symmetric function K in (7.4) is called kernel.
We may conclude that the extension of the theory to the nonlinear case is reduced to
finding kernels which identify certain families of decision surfaces and satisfy equation
(7.4). When such kernel is identified, the nonlinear separating surface can be found by
computing the solution (1, ...,2,)T of the QP problem (7.3) with

(7.5) Gij = yiy; K (pi, p;)

and the classification stage can be performed by evaluating

sign <Z zy: K (pi,p) + b) .

i=1

Two frequently used kernels are the polynomial kernel, K (p;,p;) = (1 +p!p;)¢, and the
Gaussian kernel, K(p;,p;) = exp(—||p; — p;||>/(20?). The separating surface in input
space is a polynomial surface of degree d for the polynomial kernel and a weighted sum
of Gaussians centered on the support vectors for the Gaussian kernel.

From the computational point of view, the main effort in the implementation of a SVM
consists in solving the linearly constrained convex QP problem (7.3). The size of this
problems is equal to the number of points in the training set and, consequently, in
many interesting applications of the SVMs we must to solve a large—scale QP problem
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(n larger than a few thousands [40], [43]). In these cases, since the Hessian matrix G
is generally with a large number of nonzero elements, it is very difficult to solve (7.3)
without some kind of decomposition technique. A special decomposition algorithm for
solving this problem is proposed in [39]. Exploiting the particular form of the objective
function, this method finds the solution of the full problem (7.3) by solving iteratively
QP subproblems of (7.3) which depend only on nl variables (nl < n). Each subproblem
consists in minimizing the same objective function of (7.3) with respect to the selected
nl components, the others being kept constant. The structure of the constraints of
each subproblem is as in the original problem: box constraints and only one equality
constraint.

Thus, the effectiveness of this decomposition scheme for solving very large—scale prob-
lems, is strictly dependent on the effectiveness of the solver used for the inner QP sub-
problems of smaller size.

In [52] the VPM described in Section 4.1 is used as solver for the QP problems arising in
training SVMs with Gaussian kernel. This method requires explicit storage of G and then
applies to all cases in which the size of the problem allows to keep this matrix in memory.
When the size of the problem is so large to force the use of the above decomposition
technique, the VPM can be useful for solving the smaller inner QP subproblems.

The application of a projection—type method in this particular context is suggested by
the following two reasons. First of all, the special nature of the Hessian matrix of this

problem,
—llpi — pil?
202

suggests that, for sufficiently small values of o, a good convergence rate can be expected
(the matrix G tends to the identity matrix). Second, the special structure of the con-
straints implies that, if in a projection—type scheme the Hessain matrix D of the inner QP
problems is a diagonal matrix, each subproblem becomes a single constrained separable
quadratic program subject to upper and lower bounds. For this kind of problems very
efficient algorithms are available. Furthermore, by using the VPM it is possible to have a
good convergence rate also for the nonextremely small values of ¢ that must be used for
training support vector machines with high classification accuracy. This last feature is
obtained by using the following updating rule for the variable projection parameter py:

Gij = yiyjexp < o€ R,

Pk-1 for [|[Gd*~1||* < elld* 4|2,
7.6 = k—1T k-1 .
(7.6) PE= (LZRi ifmod(k, 6) > 3,
otherwise.
k—1T ~ jk—1 .
AT GD-1Gah—1T < TGDG,‘dek,l otherwise,

The numerical experiments reported in [52] show that, on test problems arising in training
SVMs with Gaussian kernel, this particular updating rule is more efficient than the rule
(4.31) or (4.32).

In the following we report the results of a set of numerical experiments that show the
computational behaviour of the VPM on test problems arising in training support vector
machines with Gaussian kernel. We compare this scheme with another projection—type
method, the projection method with limited minimization rule (denoted by FPM as in
Section 6.3), and with the active set method implemented in the routine EO4NCF of the
NAG library. This last routine is designed to solve dense QP problems.

The experiments are carried out on a Digital Personal Workstation 500au, using the
double precision (macheps= 2.22-1071%) and a set of programs written in Fortran 77.
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Two sets of QP test problems are considered. The first set (TP1) is obtained from an
application of SVMs to a classical problem of computer vision: the recognition of 3-D
objects from a single image. To this purpose, we have used images of objects from the
COIL (Columbia Object Images Library) database [43]. The second set (TP2) consists
in test problems arising in training a support vector machine for pattern recognition
between two classes of points randomly generated in R? (p = (p1,p2), pl,p2 €]0,1]).
In both cases we solve several test problems corresponding to different values of the
parameter o of the Hessian matrix G.

In the VPM and FPM we use the identity matrix as Hessian matrix of the subproblems
(D = I) and solve the corresponding separable subproblems by the algorithm proposed
in [41]. Furthermore, since we know that the solution has many zero components, the
matrix-vector product Gy* required at each iteration is computed by working only with
the nonzero components of y*. The iterative procedures are terminated when the Karush—
Kuhn-Tucker conditions are fulfilled within a tolerance of 1075,

In the following tables we denote by it and time the number of iterations and the time in
seconds required by the methods; furthermore, we indicate by SV the number of support
vectors (number of nonzero components in the solution of (7.3)).

Table 15

Test Problem TP1 n = 1120 C=14
FPM VPM

o | SV | p 1t time 1t time
350 | 921 | 2.2 | 846 19.1 284 6.1
750 | 538 | 0.7 | 1076 | 15.6 386 5.7
950 | 413 | 0.9 | 1396 | 17.1 451 5.3

The first experiments concern the comparison between the VPM and the FPM. For the
FPM we report the results obtained with the empirical optimal value of the parameter
p. Table 15 shows the better performance of the VPM.

In the second set of experiments we compare the numerical effectiveness of the VPM
with the routine EQ4ANCF of the NAG library.

Table 16
Test Problem TP1 n = 1120 C=4
E04NCF VPM
o | SV time it time
550 | 760 59.1 402 7.2
750 | 538 58.6 386 5.7
950 | 413 55.1 451 5.3

From Table 16 and Table 17 we may observe that the VPM is more efficient than the
NAG routine and is slightly dependent on the value of o.

In Table 18 different values for the size of the QP problems are considered. We observe
that also for increasing size problems (n = 2000, n» = 3000) the VPM appears very
efficient in terms of number of iterations and computational time while the NAG routine
becomes prohibitively expensive.

These results show that the VPM is an efficient approach for the medium to large size
problems arising in training support vector machines with Gaussian kernel. Furthermore,
when the particular application of the SVM requires to solve a very large—scale QP
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Table 17
Test Problem TP2 n = 1000 cC=2
E04NCF VPM
o SV time it time
0.02 | 754 41.5 301 5.1
0.05 | 384 52.5 482 5.5
0.08 | 346 45.3 301 3.2
0.1 | 349 37.9 492 5.6
Table 18
Test Problem TP2 o =0.08 c=2
EO4NCF VPM
n SV time it time
500 | 225 7.2 311 1.4
1000 | 346 45.3 301 3.2
2000 | 687 280.1 617 24.6
3000 | 981 707.0 648 58.2

problem and the decomposition scheme proposed in [39] must be used, the VPM can be
an effective solver for the smaller inner QP subproblems.
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Appendix

A large part of the programs by which the numerical experiments reported in Chapter 6
have been carried out, are available at the following URLs:

http://www.unife.it/ AnNum97/index2.html

All the programs are written in Fortran 77 for a Digital Alpha workstation with the goal
to evaluate the methods described in this work. An exhaustive documentation of each
program is reported in the comments of the source file. In the following, we list the
names of files and we give a brief description of their content:

test98.f: the file contains the source of a program that generates a sparse linearly
constrained convex QP problems with assigned features;

inputtest98: the file contains an example of input data that must be supplied by
the user for the program test98.f;

outputtest98: the file shows the results obtained by the program test98.f when
the user supplies as input data the values in the file inputtest98;

pm_sm.f: the file contains the source of a program that computes a numerical solu-
tion of a sparse linearly constrained convex QP problems by the classical projection
method or by the classical splitting method;

inputpm_sm: the file contains an example of input data that must be supplied
by the user for the program pm_sm.f;

pm_sm.dat: the file shows the results obtained by the program pm_sm.f when the
user supplies as input data the values in the file inputpm_sm;

mpm.f: the file contains the source of a program that computes a numerical solu-
tion of a sparse linearly constrained convex QP problems by the modified projection
method of Solodov and Tseng [49];

inputmpm: the file contains an example of input data that must be supplied by
the user for the program mpm.f;

mpm.dat: the file shows the results obtained by the program mpm.f when the
user supplies as input data the values in the file inputmpm;

fpm_asm.f: the file contains the source of a program that computes a numerical
solution of a sparse linearly constrained convex QP problems by the scaled gradi-
ent projection method with a limited minimization rule [4] or by the accelerated
splitting method [18];

inputfpm_asm: the file contains an example of input data that must be supplied
by the user for the program fpm_asm.f;
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fpm_asm.dat: the file shows the results obtained by the program fpm_asm.f when
the user supplies as input data the values in the file inputfpm_asm;

afpm.f: the file contains the source of a program that computes a numerical so-
lution of a sparse linearly constrained convex QP problems by the scaled gradient
projection method with an Armijo rule along a projection arc [4];

inputafpm: the file contains an example of input data that must be supplied by
the user for the program afpm.f;

afpm.dat: the file shows the results obtained by the program afpm.f when the
user supplies as input data the values in the file inputafpm;

vpm.f: the file contains the source of a program that computes a numerical solution
of a sparse linearly constrained convex QP problems by the variable projection
method;

inputvpm: the file contains an example of input data that must be supplied by
the user for the program vpm.f;

vpm.dat: the file shows the results obtained by the program vpm.f when the user
supplies as input data the values in the file inputvpm;

avpm.f: the file contains the source of a program that computes a numerical solu-
tion of a sparse linearly constrained convex QP problems by the adaptive variable
projection method;

inputavpm: the file contains an example of input data that must be supplied by
the user for the program avpm.f;

avpm.dat: the file shows the results obtained by the program avpm.f when the
user supplies as input data the values in the file inputavpm;

nag_test.f: the file contains the source of a program that computes a numerical
solution of a sparse linearly constrained convex QP problems by the NAG routine
E04NKF;

inputnag: the file contains an example of input data that must be supplied by the
user for the program nag_test.f;

nag.dat: the file shows the results obtained by the program nag_test.f when the
user supplies as input data the values in the file inputnag.
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