
Lecture 9

Sobolev Spaces I

9.1 The finite dimensional case

We consider here the standard Gaussian measure γd = N (0, Id) in Rd. As in the case of
the Lebesgue measure λd, for 1 ≤ p < +∞ there are several equivalent definitions of the
Sobolev space W 1,p(Rd, γd). It may be defined as the set of the functions in Lp(Rd, γd)
having weak derivatives Dif , i = 1, . . . , d in Lp(Rd, γd), or as the completion of a set of
smooth functions in the Sobolev norm,

‖f‖W 1,p(Rd,γd) :=

(∫
Rd

|f |pdγd
)1/p

+

(∫
Rd

|∇f |pdγd
)1/p

. (9.1.1)

Such approaches are equivalent. We will follow the second one, which is easily extendable
to the infinite dimensional case, and in the infinite dimensional case seems to be the
simplest one. To begin with, we exhibit an integration formula for functions in C1

b (Rd), the
space of bounded continuously differentiable functions with bounded first order derivatives.

Lemma 9.1.1. For every f ∈ C1
b (Rd) and for every i = 1, . . . , d we have∫

Rd

∂f

∂xi
(x) γd(dx) =

∫
Rd

xif(x) γd(dx). (9.1.2)

The proof is left as an exercise. Applying Lemma 9.1.1 to the product fg we get the
integration by parts formula∫

Rd

f
∂g

∂xi
dγd = −

∫
Rd

g
∂f

∂xi
dγd +

∫
Rd

f(x)g(x)xi γd(dx), f, g ∈ C1
b (Rd), (9.1.3)

which is the starting point of the theory of Sobolev spaces.

We recall the definition of a closable operator, and of the closure of a closable operator.
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Definition 9.1.2. Let E, F be Banach spaces and let L : D(L) ⊂ E → F be a linear
operator. L is called closable (in E) if there exists a linear operator L : D(L) ⊂ E → F
whose graph is the closure of the graph of L in E × F . Equivalently, L is closable if

(xn) ⊂ D(L), lim
n→∞

xn = 0 in E, lim
n→∞

Lxn = z in F =⇒ z = 0. (9.1.4)

If L is closable, the domain of the closure L of L is the set

D(L) =
{
x ∈ E : ∃(xn) ⊂ D(L), lim

n→∞
xn = x, Lxn converges in F

}
and for x ∈ D(L) we have

Lx = lim
n→∞

Lxn,

for every sequence (xn) ⊂ D(L) such that limn→∞ xn = x. Condition (9.1.4) guarantees
that limn→∞ Lxn is independent of the sequence (xn). Since L is a closed operator, its
domain is a Banach space with the graph norm x 7→ ‖x‖E + ‖Lx‖F .

For every 1 ≤ p < +∞ we set as usual p′ = p/(p − 1) if 1 < p < +∞, p′ = +∞ if
p = 1.

Lemma 9.1.3. For any 1 ≤ p < +∞, the operator ∇ : D(∇) = C1
b (Rd)→ Lp(Rd, γd;Rd)

is closable in Lp(Rd, γd).

Proof. Let fn ∈ C1
b (Rd) be such that fn → 0 in Lp(Rd, γd) and ∇fn → G = (g1, . . . gd) in

Lp(Rd, γd;Rd). For every i = 1, . . . , d and ϕ ∈ C1
c (Rd) we have

lim
n→∞

∫
Rd

∂fn
∂xi

ϕdγd =

∫
Rd

giϕdγd,

since ∫
Rd

∣∣∣(∂fn
∂xi
− gi

)
ϕ
∣∣∣ dγd ≤ ‖∂fn/∂xi − gi‖Lp(Rd,γd)‖ϕ‖Lp′ (Rd,γd).

On the other hand,∫
Rd

∂fn
∂xi

ϕdγd = −
∫
Rd

fn
∂ϕ

∂xi
dγd +

∫
Rd

xifn(x)ϕ(x) γd(dx), n ∈ N,

so that, since fn → 0 in Lp(Rd, γd) and the functions x 7→ ∂ϕ/∂xi(x), x 7→ xiϕ(x) are
bounded,

lim
n→∞

∫
Rd

∂fn
∂xi

ϕdγd = 0.

So, ∫
Rd

gi ϕdγd = 0, ϕ ∈ C1
c (Rd)

which implies gi = 0 a.e.

Lemma 9.1.3 allows to define the Sobolev spaces of order 1, as follows.
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Definition 9.1.4. For every 1 ≤ p < +∞, W 1,p(Rd, γd) is the domain of the closure
of ∇ : C1

b (Rd) → Lp(Rd, γd;Rd) in Lp(Rd, γd;Rd) (still denoted by ∇). Therefore, f ∈
Lp(Rd, γd) belongs to W 1,p(Rd, γd) iff there exists a sequence of functions fn ∈ C1

b (Rd)
such that fn → f in Lp(Rd, γd) and ∇fn converges in Lp(Rd, γd;Rd), and in this case,
∇f = limn→∞∇fn. Moreover we set ∂f/∂xi(x) := ∇f(x) · ei, i = 1, . . . d.

W 1,p(Rd, γd) is a Banach space with the graph norm

‖f‖W 1,p(Rd,γd) := ‖f‖Lp(Rd,γd) + ‖∇f‖Lp(Rd,γd;Rd)

=

(∫
Rd

|f |pdγd
)1/p

+

(∫
Rd

|∇f |pdγd
)1/p

.

(9.1.5)

One could give a more abstract definition of the Sobolev spaces, as the completion
of C1

b (Rd) in the norm (9.1.1). Since the norm (9.1.1) is stronger than the Lp norm,
every element of the completion may be identified in an obvious way with an element f
of Lp(Rd, γd). However, to define ∇f we need to know that for any sequence (fn) of C1

b

functions such that fn → f in Lp(Rd, γd) and ∇fn is a Cauchy sequence in Lp(Rd, γd;Rd),
the sequence of gradients (∇fn) converges to the same limit in Lp(Rd, γd;Rd). In other
words, we need Lemma 9.1.3.

Several properties of the spaces W 1,p(Rd, γd) follow easily.

Proposition 9.1.5. Let 1 < p < +∞. Then

(i) the integration formula (9.1.2) holds for every f ∈W 1,p(X, γd), i = 1, . . . , d;

(ii) if θ ∈ C1
b (Rd) and f ∈ W 1,p(Rd, γd), then θ ◦ f ∈ W 1,p(Rd, γd), and ∇(θ ◦ f) =

(θ′ ◦ f)∇f ;

(iii) if f ∈ W 1,p(Rd, γd), g ∈ W 1,q(Rd, γd) with 1/p + 1/q = 1/s ≤ 1, then fg ∈
W 1,s(Rd, γd) and

∇(fg) = g∇f + f∇g;

(iv) W 1,p(Rd, γd) is reflexive;

(v) if fn → f in Lp(Rd, γd) and supn∈N ‖fn‖W 1,p(Rd,γd) <∞, then f ∈W 1,p(Rd, γd).

Proof. Statement (i) follows just approximating f by a sequence of functions belonging to
C1
b (Rd), using (9.1.2) for every approximating function fn and letting n→∞.

Statement (ii) follows approaching θ ◦ f by θ ◦ fn, if fn ∈ C1
b (Rd) is such that fn → f

in Lp(Rd, γd) and ∇fn → ∇f in Lp(Rd, γd;Rd).
Statement (iii) follows easily from the definition, approaching fg by fngn if fn ∈ C1

b (Rd)
are such that fn → f in Lp(Rd, γd), ∇fn → ∇f in Lp(Rd, γd;Rd), gn → g, in Lq(Rd, γd),
∇gn → ∇g in Lq(Rd, γd;Rd).

The proof of (iv) is similar to the standard proof of the reflexivity of W 1,p(Rd, λd).
The mapping u 7→ Tu = (u,∇u) is an isometry from W 1,p(Rd, γd) to the product space
E := Lp(Rd, γd)× Lp(Rd, γd;Rd), which implies that the range of T is closed in E. Now,
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Lp(Rd, γd) and Lp(Rd, γd;Rd) are reflexive so that E is reflexive, and T (W 1,p(Rd, γd)) is
reflexive too. Being isometric to a reflexive space, W 1,p(Rd, γd) is reflexive.

As a consequence of reflexivity, if a sequence (fn) is bounded in W 1,p(Rd, γd) a subse-
quence fnk

converges weakly to an element g of W 1,p(Rd, γd) as k → ∞. Since fnk
→ f

in Lp(Rd, γd), then f = g and statement (v) is proved.

Note that the argument of the proof of (ii) works as well for p = 1, and statement
(ii) is in fact true also for p = 1. Even statement (i) holds for p = 1, but the fact that
x 7→ xif(x) ∈ L1(Rd, γd) for every f ∈ W 1,1(Rd, γd) is not obvious, and will not be
considered in these lectures.

Instead, W 1,1(Rd, γd) is not reflexive, and statement (v) does not hold for p = 1 (see
Exercise 9.2).

The next characterisation is useful to recognise whether a given function belongs to
W 1,p(Rd, γd). We recall that Lploc(R

d) (resp. W 1,p
loc (Rd)) is the space of all (equivalence

classes of) functions f such that the restriction of f to any ball B belongs to Lp(B, λd)
(resp. W 1,p(B, λd)). Equivalently, f ∈ Lploc(R

d) (resp. f ∈ W 1,p
loc (Rd)) if fθ ∈ Lp(Rd, λd)

(resp. fθ ∈W 1,p(Rd, λd)) for every θ ∈ C∞c (Rd). For f ∈W 1,p
loc (Rd) we denote by Dif the

weak derivative of f with respect to xi, i = 1, . . . d.

Proposition 9.1.6. For every 1 ≤ p < +∞,

W 1,p(Rd, γd) =
{
f ∈W 1,p

loc (Rd) : f, Dif ∈ Lp(Rd, γd), i = 1, . . . d
}
.

Moreover, for every f ∈ W 1,p(Rd, γd) and i = 1, . . . , d, ∂f/∂xi coincides with the weak
derivative Dif .

Proof. Let f ∈ W 1,p(Rd, γd). Then for every g ∈ C1
c (Rd), (9.1.3) still holds: indeed, it is

sufficient to approximate f by a sequence of functions belonging to C1
b (Rd), to use (9.1.3)

for every approximating function fn, and to let n→∞.

This implies that ∂f/∂xi is equal to the weak derivative Dif . Indeed, for every ϕ ∈
C∞c (Rd), setting g(x) = ϕ(x)e|x|

2/2(2π)d/2, (9.1.3) yields∫
Rd

f
∂ϕ

∂xi
dx =

∫
Rd

f

(
∂g

∂xi
− xig

)
dγd = −

∫
Rd

∂f

∂xi
g dγd = −

∫
Rd

∂f

∂xi
ϕdx.

So, ∂f/∂xi = Dif , for every i = 1, . . . , d. Since Lp(Rd, γd) ⊂ Lploc(R
d), the inclusion

W 1,p(Rd, γd) ⊂ {f ∈W 1,p
loc (Rd) : f, Dif ∈ Lp(Rd, γd), i = 1, . . . d} is proved.

Conversely, let f ∈ W 1,p
loc (Rd) be such that f , Dif ∈ Lp(Rd, γd) for i = 1, . . . d. Fix

any function θ ∈ C∞c (Rd) such that θ ≡ 1 in B(0, 1) and θ ≡ 0 outside B(0, 2). For every
n ∈ N, we define

fn(x) := θ(x/n)f(x), x ∈ Rd.

Each fn belongs to W 1,p(Rd, γd), because the restriction of f to B(0, 2n) may be approx-
imated by a sequence (ϕk) of C1 functions in W 1,p(B(0, 2n), λd), and the sequence (uk)
defined by uk(x) = θ(x/n)ϕk(x) for |x| ≤ 2n, uk(x) = 0 for |x| ≥ 2n is contained in
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C1
b (Rd), it is a Cauchy sequence in the norm (9.1.5), and it converges to fn in Lp(Rd, γd)

since∫
Rd

|uk − fn|pdγd =

∫
B(0,2n)

|θ(x/n)(f(x)− ϕk(x))|pγd(dx) ≤ ‖θ‖∞
(2π)d/2

∫
B(0,2n)

|f − ϕk|pdx.

In its turn, the sequence (fn) converges to f in Lp(Rd, γd), by the Dominated Convergence
Theorem. Moreover, for every i = 1, . . . , d we have ∂fn/∂xi(x) = n−1Diθ(x/n)f(x) +
θ(x/n)Dif(x), so that ∂fn/∂xi converges to Dif in Lp(Rd, γd), still by the Dominated
Convergence Theorem. Therefore, f ∈W 1,p(Rd, γd).

By Proposition 9.1.6, if a C1 function f is such that f , Dif belong to Lp(Rd, γd)
for every i = 1, . . . , d, then f ∈ W 1,p(Rd, γd). In particular, all polynomials belong to
W 1,p(Rd, γd), for every 1 ≤ p < +∞.

9.2 The Bochner integral

We only need the first notions of the theory of integration for Banach space valued func-
tions. We refer to the books [DU], [Y, Ch. V] for a detailed treatment.

Let (Ω,F ) be a measurable space and let µ : F → [0,+∞) be a positive finite measure.
We shall define integrals and Lp spaces of Y -valued functions, where Y is any separable
real Banach space, with norm ‖ · ‖Y .

In the following sections, Ω will be a Banach space X endowed with a Gaussian mea-
sure, and Y will be either X or the Cameron–Martin space H. However, the definitions
and the basic properties are the same for a Gaussian measure and for a general positive
finite measure.

As in the scalar valued case, the simple functions are functions of the type

F (x) =
n∑
i=1

1lΓi(x)yi, x ∈ Ω,

with n ∈ N, Γi ∈ F , yi ∈ Y for every i = 1, . . . , n and Γi ∩ Γj = ∅ for i 6= j. In this case,
the integral of F is defined by∫

Ω
F (x)µ(dx) :=

n∑
i=1

µ(Γi)yi. (9.2.1)

It is easily seen that the integral is linear, namely for every α, β ∈ R and for every couple
of simple functions F1, F2∫

Ω
(αF1(x) + βF2(x))µ(dx) = α

∫
Ω
F1(x)µ(dx) + β

∫
X
F2(x)µ(dx) (9.2.2)

and it satisfies ∥∥∥∥∫
Ω
F (x)γ(dx)

∥∥∥∥
Y

≤
∫

Ω
‖F (x)‖Y γ(dx), (9.2.3)

for every simple function F (notice that x 7→ ‖F (x)‖Y is a simple real valued function).
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Definition 9.2.1. A function F : Ω → Y is called strongly measurable if there exists
a sequence of simple functions (Fn) such that limn→∞ ‖F (x) − Fn(x)‖Y = 0, for µ-a.e.
x ∈ Ω.

Notice that if Y is separable then this notion coincides with the general notion of
measurable function given in Definition 1.1.6, see [VTC, Proposition I.1.9]. If Y = R, see
Exercise 9.3. Also, notice that if F is strongly measurable, then ‖F (·)‖Y is a real valued
measurable function. The following theorem is a consequence of an important result is
due to Pettis (e.g. [DU, Thm. II.2]).

Theorem 9.2.2. A function F : Ω → Y is strongly measurable if and only if for every
f ∈ Y ∗ the composition f ◦ F : Ω→ R, x 7→ f(F (x)), is measurable.

As a consequence, if Y is a separable Hilbert space and {yk : k ∈ N} is an orthonormal
basis of Y , then F : Ω→ Y is strongly measurable if and only if the real valued functions
x 7→ 〈F (x), yk〉Y are measurable.

Definition 9.2.3. A strongly measurable function F : Ω→ Y is called Bochner integrable
if there exists a sequence of simple functions (Fn) such that

lim
n→∞

∫
Ω
‖F (x)− Fn(x)‖Y µ(dx) = 0.

In this case, the sequence
∫

Ω Fndµ is a Cauchy sequence in Y by estimate (9.2.3), and we
define ∫

Ω
F (x)µ(dx) := lim

n→∞

∫
Ω
Fn(x)µ(dx)

(of course, the above limit is independent of the defining sequence (Fn)). The following
result is known as the Bochner Theorem.

Proposition 9.2.4. A measurable function F : Ω→ Y is Bochner integrable if and only
if ∫

Ω
‖F (x)‖Y µ(dx) <∞.

Proof. If F is integrable, for every sequence of simple functions (Fn) in Definition 9.2.3
we have ∫

Ω
‖F (x)‖Y µ(dx) ≤

∫
Ω
‖F (x)− Fn(x)‖Y µ(dx) +

∫
Ω
‖Fn(x)‖Y µ(dx),

which is finite for n large enough.
To prove the converse, if

∫
Ω ‖F (x)‖Y µ(dx) <∞ we construct a sequence of simple func-

tions (Fn) that converge pointwise to F and such that limn→∞
∫

Ω ‖F (x)−Fn(x)‖Y µ(dx) =
0.

Let {yk : k ∈ N} be a dense subset of Y . Set

θn(x) := min{‖F (x)− yk‖Y : k = 1, . . . , n},
kn(x) := min{k ≤ n : θn(x) = ‖F (x)− yk‖Y },
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and
Fn(x) := ykn(x), x ∈ X.

Then every θn is a real valued measurable function. This implies that Fn is a simple
function, because it takes the values y1, . . . yn, and for every k = 1, . . . , n, F−1

n (yk) is the
measurable set Γk = {x ∈ Ω : θn(x) = ‖F (x)− yk‖Y }.

For every x the sequence ‖Fn(x) − F (x)‖Y decreases monotonically to 0 as n → ∞.
Moreover, for every n ∈ N,

‖Fn(x)− F (x)‖Y ≤ ‖y1 − F (x)‖Y ≤ ‖y1‖Y + ‖F (x)‖Y , x ∈ X. (9.2.4)

By the Dominated Convergence Theorem (recall that µ is a finite measure) or else, by the
Monotone Convergence Theorem,

lim
n→∞

∫
Ω
‖Fn(x)− F (x)‖Y µ(dx) = 0.

If F : Ω → Y is integrable, for every E ∈ F the function 1lEF is integrable, and we
set ∫

E
F (x)µ(dx) =

∫
Ω

1lE(x)F (x)µ(dx).

The Bochner integral is linear with respect to F , namely for every α, β ∈ R and for every
integrable F1, F2, (9.2.2) holds. Moreover, it enjoys the following properties.

Proposition 9.2.5. Let F : Ω→ Y be a Bochner integrable function. Then

(i) ‖
∫

Ω F (x)µ(dx)‖Y ≤
∫

Ω ‖F (x)‖Y µ(dx);

(ii) limµ(E)→0

∫
E F (x)µ(dx) = 0;

(iii) If (En) is a sequence of pairwise disjoint measurable sets in Ω and E = ∪n∈NEn,
then ∫

E
F (x)µ(dx) =

∑
n∈N

∫
En

F (x)µ(dx);

(iv) For every f ∈ Y ∗, the real valued function x 7→ f(F (x)) is in L1(Ω, µ), and

f

(∫
Ω
F (x)µ(dx)

)
=

∫
Ω
f(F (x))µ(dx). (9.2.5)

Proof. (i) Let (Fn) be a sequence of simple functions as in Definition 9.2.3. By (9.2.3) for
every n ∈ N we have ‖

∫
Ω Fn(x)µ(dx)‖Y ≤

∫
Ω ‖Fn(x)‖Y µ(dx). Then,∥∥∥∥∫

Ω
F (x)µ(dx)

∥∥∥∥
Y

=

∥∥∥∥ lim
n→∞

∫
Ω
Fn(x)µ(dx)

∥∥∥∥
Y

≤ lim sup
n→∞

∫
Ω
‖Fn(x)‖Y µ(dx)

≤ lim
n→∞

∫
Ω
‖Fn(x)− F (x)‖Y µ(dx) +

∫
Ω
‖F (x)‖Y µ(dx)

=

∫
Ω
‖F (x)‖Y µ(dx).
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Statement (ii) means: for every ε > 0 there exists δ > 0 such that µ(E) ≤ δ implies
‖
∫
E F (x)µ(dx)‖Y ≤ ε. Since limµ(E)→0

∫
E ‖F (x)‖Y µ(dx) = 0, statement (ii) is a conse-

quence of (i).

Let us prove statement (iii). Since, for every n,∥∥∥∥∫
En

F (x)µ(dx)

∥∥∥∥
Y

≤
∫
En

‖F (x)‖Y µ(dx),

the series
∑

n∈N
∫
En
F (x)µ(dx) converges in Y , and its norm does not exceed∫

Ω
‖F (x)‖Y µ(dx).

Since the Bochner integral is finitely additive,∥∥∥∥∫
E
F (x)µ(dx)−

m∑
n=1

∫
En

F (x)µ(dx)

∥∥∥∥
Y

=

∥∥∥∥∫
∪∞n=m+1En

F (x)µ(dx)

∥∥∥∥
Y

where limm→∞ µ(∪∞n=m+1En) = 0. By statement (ii), the right-hand side vanishes as
m→∞, and statement (iii) follows.

Let us prove statement (iv). Note that (9.2.5) holds obviously for simple functions.
Let (Fn) be the sequence of functions in the proof of Proposition 9.2.4. Then,

f

(∫
Ω
F (x)µ(dx)

)
= f

(
lim
n→∞

∫
Ω
Fn(x)µ(dx)

)
= lim

n→∞
f

(∫
Ω
Fn(x)µ(dx)

)
= lim

n→∞

∫
Ω
f(Fn(x))µ(dx).

On the other hand, the sequence (f(Fn(x))) converges pointwise to f(F (x)), and by (9.2.4)

|f(Fn(x))| ≤ ‖f‖Y ∗‖Fn(x)‖Y ≤ ‖f‖Y ∗(‖Fn(x)− F (x)‖Y + ‖F (x)‖Y )

≤ ‖f‖Y ∗(‖y1‖Y + 2‖F (x)‖Y ).

By the Dominated Convergence Theorem,

lim
n→∞

∫
Ω
f(Fn(x))µ(dx) =

∫
Ω
f(F (x))µ(dx),

and the statement follows.

Remark 9.2.6. As a consequence of (iv), if Y is a separable Hilbert space and {yk : k ∈
N} is an orthonormal basis of Y , for every Bochner integrable F : Ω→ Y the real valued
functions x 7→ 〈F (x), yk〉Y belong to L1(Ω, µ), and we have∫

Ω
F (x)µ(dx) =

∞∑
k=1

∫
Ω
〈F (x), yk〉Y µ(dx) yk.
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The Lp spaces of Y -valued functions are defined as in the scalar case. Namely, for every
1 ≤ p < +∞, Lp(Ω, µ;Y ) is the space of the (equivalence classes) of Bochner integrable
functions F : Ω→ Y such that

‖F‖Lp(Ω,µ;Y ) :=

(∫
X
‖F (x)‖pY µ(dx)

)1/p

<∞.

The proof that Lp(Ω, µ;Y ) is a Banach space with the above norm is the same as in the
real valued case. If p = 2 and Y is a Hilbert space, Lp(Ω, µ;Y ) is a Hilbert space with the
scalar product

〈F,G〉L2(Ω,µ;Y ) :=

∫
Ω
〈F (x), G(x)〉Y µ(dx).

As usual, we define

L∞(Ω, µ;Y ) :=
{
F : Ω→ Y measurable s.t. ‖F‖L∞(Ω,µ;Y ) < +∞

}
,

where
‖F‖L∞(Ω,µ;Y ) := inf

{
M > 0 : µ({x : ‖F (x)‖Y > M}) = 0

}
.

Notice that if Y is a separable Hilbert space, which is our setting, the space Lp(Ω, µ;Y )
is reflexive for 1 < p <∞, see [DU, Section IV.1].

The first example of Bochner integral that we met in these lectures was the mean a of
a Gaussian measure γ on a separable Banach space X. By Proposition 2.3.3, there exists
a unique a ∈ X such that aγ(f) = f(a), for every f ∈ X∗. Since γ is a Borel measure,
every continuous F : X → X is measurable; in particular F (x) := x is measurable,
hence strongly measurable. By the Fernique Theorem and Proposition 9.2.4 it belongs to
Lp(X, γ;X) for every 1 ≤ p < +∞, and we have

a =

∫
X
x γ(dx).

Indeed, for every f ∈ X∗, we have

f

(∫
X
x γ(dx)

)
=

∫
X
f(x) γ(dx) = aγ(f),

by (9.2.5). Therefore, a =
∫
X x γ(dx).

9.3 The infinite dimensional case

9.3.1 Differentiable functions

Definition 9.3.1. Let X, Y be normed spaces. Let x ∈ X and let Ω be a neighbourhood of
x. A function f : Ω→ Y is called (Fréchet) differentiable at x if there exists ` ∈ L(X,Y )
such that

‖f(x+ h)− f(x)− `(h)‖Y = o(‖h‖X) as h→ 0 in X.

In this case, ` is unique, and we set f ′(x) := `.
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Several properties of differentiable functions may be proved as in the case X = Rn,
Y = Rm. First, if f is differentiable at x it is continuous at x. Moreover, for every v ∈ X
the directional derivative

∂f

∂v
(x) := Y − lim

t→0

f(x+ tv)− f(x)

t

exists and is equal to f ′(x)(v).

If Y = R and f : X → R is differentiable at x, f ′(x) is an element of X∗. In particular,
if f ∈ X∗ then f is differentiable at every x and f ′ is constant, with f ′(x)(v) = f(v) for
every x, v ∈ X. If f ∈ FC1

b (X), f(x) = ϕ(`1(x), . . . , `n(x)) with `k ∈ X∗, ϕ ∈ C1
b (Rn), f

is differentiable at every x and

f ′(x)(v) =

n∑
k=1

∂ϕ

∂ξk
((`1(x), . . . , `n(x))`k(v), x, v ∈ X.

If f is differentiable at x for every x in a neighbourhood of x, it may happen that the
function X → L(X,Y ), x 7→ f ′(x) is differentiable at x, too. In this case, the derivative
is denoted by f ′′(x), and it is an element of L(X,L(X,Y )). The higher order derivatives
are defined recursively, in the same way.

If f : X → R is twice differentiable at x, f ′′(x) is an element of L(X,X∗), which is
canonically identified with the space of the continuous bilinear forms L(2)(X): indeed, if
v ∈ L(X,X∗), the function X2 → R, (x, y) 7→ v(x)(y), is linear both with respect to x
and with respect to y and it is continuous, so that it is a bilinear form; conversely every
bilinear continuous form a : X2 → R gives rise to the element v ∈ L(X,X∗) defined by
v(x)(y) = a(x, y). Moreover,

‖v‖L(X,X∗) = sup
x 6=0, y 6=0

|v(x)(y)|
‖x‖X ‖y‖X

= sup
x 6=0, y 6=0

|a(x, y)|
‖x‖X ‖y‖X

= ‖a‖L(2)(X).

Similarly, if f : X → R is k times differentiable at x, f (k)(x) is identified with an element
of the space L(k)(X) of the continuous k-linear forms.

Definition 9.3.2. Let k ∈ N. We denote by Ckb (X) the set of bounded and k times
continuously differentiable functions f : X → R, with bounded ‖f (j)‖L(j)(X) for every
j = 1, . . . , k. It is normed by

‖f‖Ck
b (X) =

k∑
j=0

sup
x∈X
‖f (j)(x)‖L(j)(X),

where we set f (0)(x) = f(x). Moreover we set

C∞b (X) =
⋂
k∈N

Ckb (X).
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If X is a Hilbert space and f : X → R is differentiable at x, there exists a unique
y ∈ X such that f ′(x)(x) = 〈x, y〉, for every x ∈ X. We set

∇f(x) := y.

From now on, X is a separable Banach space endowed with a norm ‖ · ‖ and with a
Gaussian centred non degenerate measure γ, and H is its Cameron-Martin space defined
in Lecture 3.

Definition 9.3.3. A function f : X → R is called H-differentiable at x ∈ X if there exists
`0 ∈ H∗ such that

|f(x+ h)− f(x)− `0(h)| = o(|h|H) as h→ 0 in H.

If f is H-differentiable at x, the operator `0 in the definition is called H-derivative of
f at x, and there exists a unique y ∈ H such that `0(h) = [h, y]H for every h ∈ H. We set

∇Hf(x) := y.

Definition 9.3.3 differs from 9.3.1 in that the increments are taken only in H.

Lemma 9.3.4. If f is differentiable at x, then it is H-differentiable at x, with H-derivative
given by h 7→ f ′(x)(h) for every h ∈ H. Moreover, we have

∇Hf(x) = Rγf
′(x). (9.3.1)

Proof. Setting ` = f ′(x) we have

lim
|h|H→0

|f(x+ h)− f(x)− `(h)|
|h|H

= lim
|h|H→0

|f(x+ h)− f(x)− `(h)|
‖h‖

‖h‖
|h|H

= 0,

because H is continuously embedded in X so that the ratio ‖h‖/|h|H is bounded by a
constant independent of h. This proves the first assertion. To prove (9.3.1), we recall
that for every ϕ ∈ X∗ we have ϕ(h) = [Rγϕ, h]H for each h ∈ H; in particular, taking
ϕ = f ′(x) we obtain f ′(x)(h) = [Rγf

′(x), h]H = [∇Hf(x), h]H for each h ∈ H, and
therefore ∇Hf(x) = Rγf

′(x).

If f is just H-differentiable at x, the directional derivative ∂f
∂v (x) exists for every v ∈ H,

and it is given by [∇Hf(x), v]H . Fixed any orthonormal basis {hn : n ∈ N} of H, we set

∂if(x) :=
∂f

∂hi
(x), i ∈ N.

So, we have

∇Hf(x) =
∞∑
i=1

∂if(x)hi, (9.3.2)

where the series converges in H.



110 Lecture 9

We warn the reader that if X is a Hilbert space and f is differentiable at x, the gradient
and the H-gradient of f at x do not coincide in general. If γ = N (0, Q), identifying X∗

with X as usual, Lemma 9.3.4 implies that ∇Hf(x) = Q∇f(x).

We recall that if γ is non degenerate, then Q is positive definite. Fixed any orthonormal
basis {ej : j ∈ N} of X consisting of eigenvectors of Q, Qej = λjej , then a canonical
orthonormal basis of H is {hj : j ∈ N}, with hj =

√
λjej , and we have

∂jf(x) =
√
λj
∂f

∂ej
(x), j ∈ N.

9.3.2 Sobolev spaces of order 1

As in finite dimension, the starting point to define the Sobolev spaces is an integration
formula for C1

b functions.

Proposition 9.3.5. For every f ∈ C1
b (X) and h ∈ H we have∫

X

∂f

∂h
dγ =

∫
X
f ĥ dγ. (9.3.3)

Consequently, for every f , g ∈ C1
b (X) and h ∈ H we have∫

X

∂f

∂h
g dγ = −

∫
X

∂g

∂h
f dγ +

∫
X
f g ĥ dγ. (9.3.4)

Proof. By the Cameron–Martin Theorem 3.1.5, for every t ∈ R we have∫
X
f(x+ th) γ(dx) =

∫
X
f(x)etĥ(x)−t2|h|2H/2γ(dx),

so that, for 0 < |t| ≤ 1,∫
X

f(x+ th)− f(x)

t
γ(dx) =

∫
X
f(x)

etĥ(x)−t2|h|2H/2 − 1

t
γ(dx).

As t → 0, the integral in the left-hand side converges to
∫
X ∂f/∂h dγ, by the Dominated

Convergence Theorem. Concerning the right-hand side, (etĥ(x)−t2|h|2H/2 − 1)/t→ ĥ(x) for
every x ∈ X. We estimate∣∣∣∣etĥ(x)−t2|h|2H/2 − 1

t

∣∣∣∣ =

∣∣∣∣e−t2|h|2H/2(etĥ(x) − 1)

t
+
e−t

2|h|2H/2 − 1

t

∣∣∣∣
≤ |ĥ(x)etĥ(x)|+ sup

0<t≤1

∣∣∣∣e−t2|h|2H/2 − 1

t

∣∣∣∣,
where the function x 7→ ĥ(x)etĥ(x) belongs to L1(X, γ) since ĥ is a Gaussian random
variable. So, applying the Dominated Convergence Theorem we get the statement.
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Notice that formula (9.3.3) is a natural extension of (9.1.2) to the infinite dimensional
case. In (Rd, γd) the equality H = Rd holds, and for every h ∈ Rd we have ĥ(x) = h · x =
[h, x]H .

We proceed as in finite dimension to define the Sobolev spaces of order 1. Next step
is to prove that some gradient operator, defined on a set of good enough functions, is
closable in Lp(X, γ). In our general setting the only available gradient is ∇H . We shall
use the following lemma, whose proof is left as an exercise, being a consequence of the
results of Lecture 7.

Lemma 9.3.6. Let ψ ∈ L1(X, γ) be such that∫
X
ψ ϕdγ = 0, ϕ ∈ FC1

b (X).

Then ψ = 0 a.e.

Proposition 9.3.7. For every 1 ≤ p < +∞, the operator ∇H : D(∇H) = FC1
b (X) →

Lp(X, γ;H) is closable in Lp(X, γ).

Proof. Let 1 < p < +∞. Let fn ∈ FC1
b (X) be such that fn → 0 in Lp(X, γ) and

∇Hfn → G in Lp(X, γ;H). For every h ∈ H and ϕ ∈ FC1
b (X) we have

lim
n→∞

∫
X

∂fn
∂h

ϕdγ =

∫
X

[G(x), h]Hϕ(x) γ(dx),

since ∫
X
|(∂fn/∂h− [G(x), h]H)ϕ| dγ ≤ |h|pH

(∫
X
|∇Hfn −G|pHdγ

)1/p

‖ϕ‖Lp′ (X,γ).

On the other hand,∫
X

∂fn
∂h

ϕdγ = −
∫
X
fn
∂ϕ

∂h
dγ +

∫
X
fnϕĥ dγ, n ∈ N,

so that, since fn → 0 in Lp(X, γ) and ∂ϕ/∂h, ĥϕ ∈ Lp′(X, γ),

lim
n→∞

∫
X

∂fn
∂h

ϕdγ = 0.

So, ∫
X

[G(x), h]Hϕ(x) γ(dx) = 0, ϕ ∈ FC1
b (X), (9.3.5)

and by Lemma 9.3.6, [G(x), h]H = 0 a.e. Fix any orthonormal basis {hk : k ∈ N} of H.
Then ∪k∈N{x : [G(x), hk]H 6= 0} is negligible so that G(x) = 0 a.e.

Let now be p = 1. The above procedure does not work, since ĥϕ /∈ L∞(X, γ) in
general, although it belongs to Lq(X, γ) for every q > 1. We modify it introducing a
function θ ∈ C2

b (R) such that θ(0) = 0, θ′(0) 6= 0, and replacing fn by θ ◦ fn. Still,
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θ ◦ fn → 0 in L1(X, γ) as n → ∞, because |θ(fn(x))| = |θ(fn(x)) − θ(0)| ≤ ‖θ′‖∞|fn(x)|.
Moreover, for every h ∈ H, n ∈ N and ϕ ∈ FC1

b (X) we have∫
X

∂(θ ◦ fn)

∂h
ϕdγ =

∫
X

(θ′ ◦ fn)
∂fn
∂h

ϕdγ. (9.3.6)

Letting n→∞, the right hand side converges to θ′(0)
∫
X [G(x), h]Hϕdγ. Indeed,∣∣∣∣ ∫

X
(θ′ ◦ fn)

∂fn
∂h

ϕdγ − θ′(0)

∫
X

[G(x), h]Hϕdγ

∣∣∣∣
≤
∫
X
|(θ′ ◦ fn)ϕ|

∣∣∣∣∂fn∂h − [G(x), h]H

∣∣∣∣ dγ +

∫
X
|(θ′ ◦ fn)− θ′(0)||[G(x), h]Hϕ| dγ.

Since θ′ and ϕ are bounded, the first integral vanishes as n → ∞. Every subsequence of
(fn) has a sub-subsequence fnk

→ 0 a.e., so that (θ′ ◦ fnk
)− θ′(0)→ 0 a.e.; moreover,

|(θ′ ◦ fnk
)(x)− θ′(0)||[G(x), h]Hϕ(x)| ≤ 2‖θ′‖∞|G(x)|H |h|H‖ϕ‖∞ ≤ C|G(x)|H

and by the Dominated Convergence theorem
∫
X |(θ

′ ◦ fnk
)− θ′(0)||[G(x), h]Hϕ| dγ → 0 as

k →∞. Since this holds for every subsequence of (fn), then

lim
n→∞

∫
X
|(θ′ ◦ fn)− θ′(0)||[G(x), h]Hϕ| dγ = 0.

Similar arguments yield

lim
n→∞

∫
X

∂(θ ◦ fn)

∂h
ϕdγ = 0. (9.3.7)

Indeed, by the integration by parts formula (9.3.4), for every n we have∫
X

∂(θ ◦ fn)

∂h
ϕdγ =

∫
X

(θ ◦ fn)[ĥϕ− ∂ϕ

∂h
] dγ.

Taking as before any subsequence (fnk
) such that fnk

→ 0 a.e., we have (θ◦fnk
)[ĥϕ− ∂ϕ

∂h ]→
0 a.e., and for a.e. x ∈ X we have∣∣∣(θ ◦ fnk

)
[
ĥϕ− ∂ϕ

∂h

]
(x)
∣∣∣ ≤ ‖θ‖∞(|ĥ(x)|‖ϕ‖∞ +

∥∥∥∂ϕ
∂h

∥∥∥
∞

)
and by the Dominated Convergence Theorem, (9.3.7) holds along the subsequence (fnk

)
and then along the whole sequence (fn).

Letting n→∞ in (9.3.6), we obtain

θ′(0)

∫
X

[G(x), h]Hϕdγ = 0, ϕ ∈ FC1
b (X).

Since θ′(0) 6= 0, (9.3.5) holds for every ϕ ∈ FC1
b (X). By Lemma 9.3.6, [G(x), h]H = 0 a.e.

for every h ∈ H and we conclude as in the case 1 < p < +∞.
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The proof of Proposition 9.3.7 for p = 1 is more complicated than the proof of Lemma
9.1.3, where we could use compactly supported functions ϕ.

Remark 9.3.8. Note that in the proof of Proposition 9.3.7 we proved that for every
h ∈ H the linear operator ∂h : D(∂h) = FC1

b (X)→ Lp(X, γ) is closable in Lp(X, γ).

We are now ready to define the Sobolev spaces of order 1 and the generalized H-
gradients.

Definition 9.3.9. For every 1 ≤ p < +∞, W 1,p(X, γ) is the domain of the closure of
∇H : FC1

b (X) → Lp(X, γ;H) in Lp(X, γ) (still denoted by ∇H). Therefore, an element
f ∈ Lp(X, γ) belongs to W 1,p(X, γ) iff there exists a sequence of functions fn ∈ FC1

b (X)
such that fn → f in Lp(X, γ) and ∇Hfn converges in Lp(X, γ;H), and in this case,
∇Hf = limn→∞∇Hfn.

W 1,p(X, γ) is a Banach space with the graph norm

‖f‖W 1,p := ‖f‖Lp(X,γ) + ‖∇Hf‖Lp(X,γ;H) =

(∫
X
|f |pdγ

)1/p

+

(∫
X
|∇Hf |pHdγ

)1/p

.

(9.3.8)

For p = 2, W 1,2(X, γ) is a Hilbert space with the natural inner product

〈f, g〉W 1,2 :=

∫
X
f g dγ +

∫
X

[∇Hf,∇Hg]Hdγ,

which gives an equivalent norm.

For every fixed orthonormal basis {hj : j ∈ N} of H, and for every f ∈ W 1,p(X, γ),
we set

∂jf(x) := [∇Hf(x), hj ]H , j ∈ N.

More generally, for every h ∈ H we set

∂hf(x) := [∇Hf(x), h]H .

By definition,∫
X
|∇Hf |pHdγ =

∫
X

( ∞∑
j=1

[∇Hf, hj ]2H
)p/2

dγ =

∫
X

( ∞∑
j=1

(∂jf)2

)p/2
dγ.

Moreover, if fn ∈ FC1
b (X) is such that fn → f in Lp(X, γ) and ∇Hfn converges in

Lp(X, γ;H), then

lim
n→∞

[∇Hfn, hj ]H = lim
n→∞

∂jfn = ∂jf, in Lp(X, γ).

As in finite dimension, several properties of the spaces W 1,p(X, γ) follow easily.

Proposition 9.3.10. Let 1 < p <∞. Then
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(i) the integration formula (9.3.3) holds for every f ∈W 1,p(X, γ), h ∈ H;

(ii) if θ ∈ C1
b (X;R) and f ∈ W 1,p(X, γ), then θ ◦ f ∈ W 1,p(X, γ), and ∇H(θ ◦ f) =

(θ′ ◦ f)∇Hf ;

(iii) if f ∈ W 1,p(X, γ), g ∈ W 1,q(X, γ) with 1/p + 1/q = 1/s ≤ 1, then fg ∈ W 1,s(X, γ)
and

∇H(fg) = ∇Hf g + f∇Hg;

(iv) W 1,p(X, γ) is reflexive;

(v) if fn → f in Lp(X, γ) and supn∈N ‖fn‖W 1,p(X,γ) <∞, then f ∈W 1,p(X, γ).

Proof. The proof is just a rephrasing of the proof of Proposition 9.1.5.
Statement (i) follows approaching f by a sequence of functions belonging to FC1

b (X),
using (9.3.3) for every approximating function fn and letting n→∞.

Statement (ii) follows approaching θ◦f by θ◦fn, if (fn) ⊂ FC1
b (X) is such that fn → f

in Lp(X, γ) and ∇Hfn → ∇Hf in Lp(X, γ;H).
Statement (iii) follows from the definition, approaching fg by fngn if (fn), (gn) ⊂

FC1
b (X), are such that fn → f in Lp(X, γ), ∇Hfn → ∇Hf in Lp(X, γ;H), gn → g in

Lp
′
(X, γ), ∇Hgn → ∇Hg in Lp

′
(X, γ;H). Then limn→∞ fngn = fg in Ls(X, γ), and the

sequence (∇H(fngn)) converges to g∇Hf + f∇Hg in Ls(X, γ;H).
Let us prove (iv). The mapping u 7→ Tu = (u,∇Hu) is an isometry from W 1,p(X, γ)

to the product space E := Lp(X, γ) × Lp(X, γ;H), which implies that the range of T is
closed in E. Now, Lp(X, γ) and Lp(X, γ;H) are reflexive (e.g. [DU, Ch. IV]) so that
E is reflexive, and T (W 1,p(X, γ)) is reflexive too. Being isometric to a reflexive space,
W 1,p(X, γ) is reflexive.

As a consequence of reflexivity, if a sequence (fn) is bounded in W 1,p(X, γ) a subse-
quence fnk

converges weakly to an element g of W 1,p(X, γ) as k → ∞. Since fnk
→ f in

Lp(X, γ), then f = g and statement (v) is proved.

As in finite dimension, statement (ii) holds as well for p = 1.

Remark 9.3.11. Let X be a Hilbert space and let γ = N (0, Q) with Q > 0. For every
f ∈ FC1

b (X) we have ∇Hf(x) = Q∇f(x), so that

|∇Hf(x)|2H = 〈Q−1/2Q∇f(x), Q−1/2Q∇f(x)〉 = ‖Q1/2∇f(x)‖2,

and

‖f‖W 1,p(X,γ) = ‖f‖Lp(X,γ) +

(∫
X
‖Q1/2∇f(x)‖pdγ

)1/p

.

Fixed any orthonormal basis {ej : j ∈ N} of X consisting of eigenvectors of Q, Qej = λjej ,
then a canonical basis of H is {hj : j ∈ N}, with hj =

√
λjej , ∂jf(x) =

√
λj∂f/∂ej , and

‖f‖W 1,p(X,γ) = ‖f‖Lp(X,γ) +

(∫
X

( ∞∑
j=1

λj

(
∂f

∂ej

)2)1/p

dγ

)1/p

.



Sobolev spaces I 115

One can consider Sobolev spaces W̃ 1,p(X, γ) defined as in Definition 9.3.9, with the
gradient∇ replacing theH-gradient∇H . Namely, the proof of Proposition 9.3.7 yields that
the operator ∇ : FC1

b (X) → Lp(X, γ;X) is closable; we define W̃ 1,p(X, γ) as the domain
of its closure, still denoted by ∇. This choice looks even simpler and more natural; the
norm in W̃ 1,p is the graph norm of ∇ and it is given by

‖f‖
W̃ 1,p(X,γ)

:=

(∫
X
|f |pdγ

)1/p

+

(∫
X
‖∇f‖pdγ

)1/p

=

(∫
X
|f |pdγ

)1/p

+

(∫
X

( ∞∑
j=1

(
∂f

∂ej

)2)1/p

dγ

)1/p

.

(9.3.9)

Since limk→∞ λk = 0, our Sobolev space W 1,p(X, γ) strictly contains W̃ 1,p(X, γ), and the

embedding W̃ 1,p(X, γ) ⊂W 1,p(X, γ) is continuous.

9.4 Exercises

Exercise 9.1. Prove Lemma 9.1.1.

Exercise 9.2. (i) Prove that statement (v) of Proposition 9.1.5 is false for p = 1, d = 1.
(Hint: use Proposition 9.1.6, and the sequence (fn) defined by fn(x) = 0 for x ≤ 0,
fn(x) = nx for 0 ≤ x ≤ 1/n, fn(x) = 1 for x ≥ 1/n).

(ii) Using (i), prove that W 1,1(R, γ1) is not reflexive.

Exercise 9.3. Let (Ω,F ) be a measurable space, and let µ be a positive finite measure
in Ω. Prove that a function f : Ω→ R is measurable if and only if it is the pointwise a.e.
limit of a sequence of simple functions.

Exercise 9.4. Prove Lemma 9.3.6.
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